2,498
Views
11
CrossRef citations to date
0
Altmetric
Review

The translation factors of Drosophila melanogaster

, &
Pages 65-74 | Received 15 Jun 2016, Accepted 18 Jul 2016, Published online: 05 Sep 2016

References

  • Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11:113-27; PMID:20094052; http://dx.doi.org/10.1038/nrm2838
  • Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 2012; 4:a013706; PMID:22751155; http://dx.doi.org/10.1101/cshperspect.a013706
  • Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 2012; 1819:1035-54; PMID:22172991; http://dx.doi.org/10.1016/j.bbagrm.2011.11.009
  • Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nat Rev Drug Discov 2015; 14:261-78; PMID:25743081; http://dx.doi.org/10.1038/nrd4505
  • Boczonadi V, Horvath R. Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 2014; 48:77-84; PMID:24412566; http://dx.doi.org/10.1016/j.biocel.2013.12.011
  • Spilka R, Ernst C, Mehta AK, Haybaeck J. Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett 2013; 340:9-21; PMID:23830805; http://dx.doi.org/10.1016/j.canlet.2013.06.019
  • Lu J, Marygold SJ, Gharib WH, Suter B. The aminoacyl-tRNA synthetases of Drosophila melanogaster. Fly (Austin) 2015; 9:53-61; PMID:26761199; http://dx.doi.org/10.1080/19336934.2015.1101196
  • Lasko P. The Drosophila melanogaster genome: translation factors and RNA binding proteins. J Cell Biol 2000; 150:F51-6; PMID:10908586; http://dx.doi.org/10.1083/jcb.150.2.F51
  • Marygold SJ, Roote J, Reuter G, Lambertsson A, Ashburner M, Millburn GH, Harrison PM, Yu Z, Kenmochi N, Kaufman TC, et al. The ribosomal protein genes and Minute loci of Drosophila melanogaster. Genome Biol 2007; 8:R216; PMID:17927810; http://dx.doi.org/10.1186/gb-2007-8-10-r216
  • Attrill H, Falls K, Goodman JL, Millburn GH, Antonazzo G, Rey AJ, Marygold SJ, FlyBase Consortium. FlyBase: establishing a Gene Group resource for Drosophila melanogaster. Nucleic Acids Res 2016; 44:D786-92; PMID:26467478; http://dx.doi.org/10.1093/nar/gkv1046
  • Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA 2012; 3:543-55
  • Jackson RJ, Hellen CU, Pestova TV. Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol 2012; 86:45-93; PMID:22243581; http://dx.doi.org/10.1016/B978-0-12-386497-0.00002-5
  • Hu Y, Flockhart I, Vinayagam A, Bergwitz C, Berger B, Perrimon N, Mohr SE. An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 2011; 12:357; PMID:21880147; http://dx.doi.org/10.1186/1471-2105-12-357
  • Aitken CE, Lorsch JR. A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol 2012; 19:568-76; PMID:22664984; http://dx.doi.org/10.1038/nsmb.2303
  • Myrick KV, Dearolf CR. Hyperactivation of the Drosophila Hop jak kinase causes the preferential overexpression of eIF1A transcripts in larval blood cells. Gene 2000; 244:119-25; PMID:10689194; http://dx.doi.org/10.1016/S0378-1119(99)00568-5
  • Krauss V, Reuter G. Two genes become one: the genes encoding heterochromatin protein Su(var)3-9 and translation initiation factor subunit eIF-2gamma are joined to a dicistronic unit in holometabolic insects. Genetics 2000; 156:1157-67; PMID:11063691
  • Qu S, Cavener DR. Isolation and characterization of the Drosophila melanogaster eIF-2 α gene encoding the α subunit of translation initiation factor eIF-2. Gene 1994; 140:239-42; PMID:8144032; http://dx.doi.org/10.1016/0378-1119(94)90550-9
  • Ye X, Cavener DR. Isolation and characterization of the Drosophila melanogaster gene encoding translation-initiation factor eIF-2 β. Gene 1994; 142:271-4; PMID:8194763; http://dx.doi.org/10.1016/0378-1119(94)90273-9
  • Williams DD, Pavitt GD, Proud CG. Characterization of the initiation factor eIF2B and its regulation in Drosophila melanogaster. J Biol Chem 2001; 276:3733-42; PMID:11060303; http://dx.doi.org/10.1074/jbc.M008041200
  • Hernandez G, Vazquez-Pianzola P, Zurbriggen A, Altmann M, Sierra JM, Rivera-Pomar R. Two functionally redundant isoforms of Drosophila melanogaster eukaryotic initiation factor 4B are involved in cap-dependent translation, cell survival, and proliferation. Eur J Biochem 2004; 271:2923-36; PMID:15233788; http://dx.doi.org/10.1111/j.1432-1033.2004.04217.x
  • Carrera P, Johnstone O, Nakamura A, Casanova J, Jackle H, Lasko P. VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol Cell 2000; 5:181-7; PMID:10678180; http://dx.doi.org/10.1016/S1097-2765(00)80414-1
  • Dorn R, Morawietz H, Reuter G, Saumweber H. Identification of an essential Drosophila gene that is homologous to the translation initiation factor eIF-4A of yeast and mouse. Mol Gen Genet 1993; 237:233-40; PMID:8455559
  • Hernandez G, Lalioti V, Vandekerckhove J, Sierra JM, Santaren JF. Identification and characterization of the expression of the translation initiation factor 4A (eIF4A) from Drosophila melanogaster. Proteomics 2004; 4:316-26; PMID:14760701; http://dx.doi.org/10.1002/pmic.200300555
  • Hernandez G, Altmann M, Sierra JM, Urlaub H, Diez del Corral R, Schwartz P, Rivera-Pomar R. Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila. Mech Dev 2005; 122:529-43; PMID:15804566; http://dx.doi.org/10.1016/j.mod.2004.11.011
  • Hernandez G, Vazquez-Pianzola P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev 2005; 122:865-76; PMID:15922571; http://dx.doi.org/10.1016/j.mod.2005.04.002
  • Hernandez G, Diez del Corral R, Santoyo J, Campuzano S, Sierra JM. Localization, structure and expression of the gene for translation initiation factor eIF-4E from Drosophila melanogaster. Mol Gen Genet 1997; 253:624-33; PMID:9065696; http://dx.doi.org/10.1007/s004380050365
  • Hernandez G, Sierra JM. Translation initiation factor eIF-4E from Drosophila: cDNA sequence and expression of the gene. Biochim Biophys Acta 1995; 1261:427-31; PMID:7742371; http://dx.doi.org/10.1016/0167-4781(95)00039-J
  • Cho PF, Gamberi C, Cho-Park YA, Cho-Park IB, Lasko P, Sonenberg N. Cap-dependent translational inhibition establishes two opposing morphogen gradients in Drosophila embryos. Curr Biol 2006; 16:2035-41; PMID:17055983; http://dx.doi.org/10.1016/j.cub.2006.08.093
  • Cho PF, Poulin F, Cho-Park YA, Cho-Park IB, Chicoine JD, Lasko P, Sonenberg N. A new paradigm for translational control: inhibition via 5′-3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 2005; 121:411-23; PMID:15882623; http://dx.doi.org/10.1016/j.cell.2005.02.024
  • Yarunin A, Harris RE, Ashe MP, Ashe HL. Patterning of the Drosophila oocyte by a sequential translation repression program involving the d4EHP and Belle translational repressors. RNA Biol 2011; 8:904-12; PMID:21788736; http://dx.doi.org/10.4161/rna.8.5.16325
  • Ghosh S, Lasko P. Loss-of-function analysis reveals distinct requirements of the translation initiation factors eIF4E, eIF4E-3, eIF4G and eIF4G2 in Drosophila spermatogenesis. PLoS One 2015; 10:e0122519; PMID:25849588; http://dx.doi.org/10.1371/journal.pone.0122519
  • Hernandez G, Han H, Gandin V, Fabian L, Ferreira T, Zuberek J, Sonenberg N, Brill JA, Lasko P. Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in Drosophila. Development 2012; 139:3211-20; PMID:22833128; http://dx.doi.org/10.1242/dev.073122
  • Brown JB, Boley N, Eisman R, May GE, Stoiber MH, Duff MO, Booth BW, Wen J, Park S, Suzuki AM, et al. Diversity and dynamics of the Drosophila transcriptome. Nature 2014; 512:393-9; PMID:24670639; http://dx.doi.org/10.1038/nature12962
  • Chintapalli VR, Wang J, Dow JA. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 2007; 39:715-20; PMID:17534367; http://dx.doi.org/10.1038/ng2049
  • Baker CC, Fuller MT. Translational control of meiotic cell cycle progression and spermatid differentiation in male germ cells by a novel eIF4G homolog. Development 2007; 134:2863-9; PMID:17611220; http://dx.doi.org/10.1242/dev.003764
  • Franklin-Dumont TM, Chatterjee C, Wasserman SA, Dinardo S. A novel eIF4G homolog, Off-schedule, couples translational control to meiosis and differentiation in Drosophila spermatocytes. Development 2007; 134:2851-61; PMID:17611222; http://dx.doi.org/10.1242/dev.003517
  • Hernandez G, del Mar Castellano M, Agudo M, Sierra JM. Isolation and characterization of the cDNA and the gene for eukaryotic translation initiation factor 4G from Drosophila melanogaster. Eur J Biochem 1998; 253:27-35; PMID:9578457; http://dx.doi.org/10.1046/j.1432-1327.1998.2530027.x
  • Takahashi K, Maruyama M, Tokuzawa Y, Murakami M, Oda Y, Yoshikane N, Makabe KW, Ichisaka T, Yamanaka S. Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 (EIF4G2). Genomics 2005; 85:360-71; PMID:15718103; http://dx.doi.org/10.1016/j.ygeno.2004.11.012
  • Yoshikane N, Nakamura N, Ueda R, Ueno N, Yamanaka S, Nakamura M. Drosophila NAT1, a homolog of the vertebrate translational regulator NAT1/DAP5/p97, is required for embryonic germband extension and metamorphosis. Dev Growth Differ 2007; 49:623-34; PMID:17716306; http://dx.doi.org/10.1111/j.1440-169X.2007.00956.x
  • Bradley S, Narayanan S, Rosbash M. NAT1/DAP5/p97 and atypical translational control in the Drosophila Circadian Oscillator. Genetics 2012; 192:943-57; PMID:22904033; http://dx.doi.org/10.1534/genetics.112.143248
  • Liberman N, Marash L, Kimchi A. The translation initiation factor DAP5 is a regulator of cell survival during mitosis. Cell Cycle 2009; 8:204-9; PMID:19158497; http://dx.doi.org/10.4161/cc.8.2.7384
  • Kim JH, Park SM, Park JH, Keum SJ, Jang SK. eIF2A mediates translation of hepatitis C viral mRNA under stress conditions. EMBO J 2011; 30:2454-64; PMID:21556050; http://dx.doi.org/10.1038/emboj.2011.146
  • Parsyan A, Shahbazian D, Martineau Y, Petroulakis E, Alain T, Larsson O, Mathonnet G, Tettweiler G, Hellen CU, Pestova TV, et al. The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis. Proc Natl Acad Sci U S A 2009; 106:22217-22; PMID:20018725; http://dx.doi.org/10.1073/pnas.0909773106
  • Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV. Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 2008; 135:1237-50; PMID:19109895; http://dx.doi.org/10.1016/j.cell.2008.10.037
  • Hernandez G, Miron M, Han H, Liu N, Magescas J, Tettweiler G, Frank F, Siddiqui N, Sonenberg N, Lasko P. Mextli is a novel eukaryotic translation initiation factor 4E-binding protein that promotes translation in Drosophila melanogaster. Mol Cell Biol 2013; 33:2854-64; PMID:23716590; http://dx.doi.org/10.1128/MCB.01354-12
  • Lefrere V, Vincent A, Amalric F. Drosophila melanogaster poly(A)-binding protein: cDNA cloning reveals an unusually long 3′-untranslated region of the mRNA, also present in other eukaryotic species. Gene 1990; 96:219-25; PMID:2125288; http://dx.doi.org/10.1016/0378-1119(90)90256-Q
  • Smith RW, Blee TK, Gray NK. Poly(A)-binding proteins are required for diverse biological processes in metazoans. Biochem Soc Trans 2014; 42:1229-37; PMID:25110030; http://dx.doi.org/10.1042/BST20140111
  • Ji Y, Shah S, Soanes K, Islam MN, Hoxter B, Biffo S, Heslip T, Byers S. Eukaryotic initiation factor 6 selectively regulates Wnt signaling and β-catenin protein synthesis. Oncogene 2008; 27:755-62; PMID:17667944; http://dx.doi.org/10.1038/sj.onc.1210667
  • Miluzio A, Beugnet A, Volta V, Biffo S. Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep 2009; 10:459-65; PMID:19373251; http://dx.doi.org/10.1038/embor.2009.70
  • Palacios IM, Gatfield D, St Johnston D, Izaurralde E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 2004; 427:753-7; PMID:14973490; http://dx.doi.org/10.1038/nature02351
  • Frazer LN, Nancollis V, O'Keefe RT. The role of Snu114p during pre-mRNA splicing. Biochem Soc Trans 2008; 36:551-3; PMID:18482006; http://dx.doi.org/10.1042/BST0360551
  • Carmell MA, Xuan Z, Zhang MQ, Hannon GJ. The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 2002; 16:2733-42; PMID:12414724; http://dx.doi.org/10.1101/gad.1026102
  • Lee S, Nahm M, Lee M, Kwon M, Kim E, Zadeh AD, Cao H, Kim HJ, Lee ZH, Oh SB, et al. The F-actin-microtubule crosslinker Shot is a platform for Krasavietz-mediated translational regulation of midline axon repulsion. Development 2007; 134:1767-77; PMID:17409115; http://dx.doi.org/10.1242/dev.02842
  • Dever TE, Gutierrez E, Shin BS. The hypusine-containing translation factor eIF5A. Crit Rev Biochem Mol Biol 2014; 49:413-25; PMID:25029904; http://dx.doi.org/10.3109/10409238.2014.939608
  • Gonzalez-Flores JN, Shetty SP, Dubey A, Copeland PR. The molecular biology of selenocysteine. Biomol Concepts 2013; 4:349-65; PMID:25436585; http://dx.doi.org/10.1515/bmc-2013-0007
  • Hovemann B, Richter S, Walldorf U, Cziepluch C. Two genes encode related cytoplasmic elongation factors 1 α (EF-1 α) in Drosophila melanogaster with continuous and stage specific expression. Nucleic Acids Res 1988; 16:3175-94; PMID:3131735; http://dx.doi.org/10.1093/nar/16.8.3175
  • Fan Y, Schlierf M, Gaspar AC, Dreux C, Kpebe A, Chaney L, Mathieu A, Hitte C, Gremy O, Sarot E, et al. Drosophila translational elongation factor-1gamma is modified in response to DOA kinase activity and is essential for cellular viability. Genetics 2010; 184:141-54; PMID:19841092; http://dx.doi.org/10.1534/genetics.109.109553
  • Grinblat Y, Brown NH, Kafatos FC. Isolation and characterization of the Drosophila translational elongation factor 2 gene. Nucleic Acids Res 1989; 17:7303-14; PMID:2508059; http://dx.doi.org/10.1093/nar/17.18.7303
  • Patel PH, Costa-Mattioli M, Schulze KL, Bellen HJ. The Drosophila deoxyhypusine hydroxylase homologue nero and its target eIF5A are required for cell growth and the regulation of autophagy. J Cell Biol 2009; 185:1181-94; PMID:19546244; http://dx.doi.org/10.1083/jcb.200904161
  • Hirosawa-Takamori M, Chung HR, Jackle H. Conserved selenoprotein synthesis is not critical for oxidative stress defence and the lifespan of Drosophila. EMBO Rep 2004; 5:317-22; PMID:14978508; http://dx.doi.org/10.1038/sj.embor.7400097
  • Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, et al. The developmental transcriptome of Drosophila melanogaster. Nature 2011; 471:473-9; PMID:21179090; http://dx.doi.org/10.1038/nature09715
  • Chao AT, Dierick HA, Addy TM, Bejsovec A. Mutations in eukaryotic release factors 1 and 3 act as general nonsense suppressors in Drosophila. Genetics 2003; 165:601-12; PMID:14573473
  • Nurenberg E, Tampe R. Tying up loose ends: ribosome recycling in eukaryotes and archaea. Trends Biochem Sci 2013; 38:64-74; PMID:23266104; http://dx.doi.org/10.1016/j.tibs.2012.11.003
  • Coelho CM, Kolevski B, Bunn C, Walker C, Dahanukar A, Leevers SJ. Growth and cell survival are unevenly impaired in pixie mutant wing discs. Development 2005; 132:5411-24; PMID:16291791; http://dx.doi.org/10.1242/dev.02148
  • Andersen DS, Leevers SJ. The essential Drosophila ATP-binding cassette domain protein, Pixie, binds the 40 S ribosome in an ATP-dependent manner and is required for translation initiation. J Biol Chem 2007; 282:14752-60; PMID:17392269; http://dx.doi.org/10.1074/jbc.M701361200
  • Schleich S, Strassburger K, Janiesch PC, Koledachkina T, Miller KK, Haneke K, Cheng YS, Kuchler K, Stoecklin G, Duncan KE, et al. DENR-MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature 2014; 512:208-12; PMID:25043021; http://dx.doi.org/10.1038/nature13401
  • Kuzmenko A, Atkinson GC, Levitskii S, Zenkin N, Tenson T, Hauryliuk V, Kamenski P. Mitochondrial translation initiation machinery: conservation and diversification. Biochimie 2014; 100:132-40; PMID:23954798; http://dx.doi.org/10.1016/j.biochi.2013.07.024
  • Trivigno C, Haerry TE. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling. PLoS One 2011; 6:e16799; PMID:21364917; http://dx.doi.org/10.1371/journal.pone.0016799
  • Rencus-Lazar S, Amir Y, Wu J, Chien CT, Chamovitz DA, Segal D. The proto-oncogene Int6 is essential for neddylation of Cul1 and Cul3 in Drosophila. PLoS One 2008; 3:e2239; PMID:18493598; http://dx.doi.org/10.1371/journal.pone.0002239
  • Chew SK, Chen P, Link N, Galindo KA, Pogue K, Abrams JM. Genome-wide silencing in Drosophila captures conserved apoptotic effectors. Nature 2009; 460:123-7; PMID:19483676; http://dx.doi.org/10.1038/nature08087
  • D'Brot A, Chen P, Vaishnav M, Yuan S, Akey CW, Abrams JM. Tango7 directs cellular remodeling by the Drosophila apoptosome. Genes Dev 2013; 27:1650-5; PMID:23913920; http://dx.doi.org/10.1101/gad.219287.113
  • Serpinskaya AS, Tuphile K, Rabinow L, Gelfand VI. Protein kinase Darkener of apricot and its substrate EF1gamma regulate organelle transport along microtubules. J Cell Sci 2014; 127:33-9; PMID:24163433; http://dx.doi.org/10.1242/jcs.123885
  • Ugur B, Chen K, Bellen HJ. Drosophila tools and assays for the study of human diseases. Dis Model Mech 2016; 9:235-44; PMID:26935102; http://dx.doi.org/10.1242/dmm.023762
  • Qu S, Perlaky SE, Organ EL, Crawford D, Cavener DR. Mutations at the Ser50 residue of translation factor eIF-2alpha dominantly affect developmental rate, body weight, and viability of Drosophila melanogaster. Gene Expr 1997; 6:349-60; PMID:9495316
  • Miyazaki S, Rasmussen S, Imatani A, Diella F, Sullivan DT, Callahan R. Characterization of the Drosophila ortholog of mouse eIF-3p48/INT-6. Gene 1999; 233:241-7; PMID:10375641; http://dx.doi.org/10.1016/S0378-1119(99)00130-4
  • Lavoie CA, Lachance PE, Sonenberg N, Lasko P. Alternatively spliced transcripts from the Drosophila eIF4E gene produce two different Cap-binding proteins. J Biol Chem 1996; 271:16393-8; PMID:8663200; http://dx.doi.org/10.1074/jbc.271.27.16393
  • Okumura F, Zou W, Zhang DE. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev 2007; 21:255-60; PMID:17289916; http://dx.doi.org/10.1101/gad.1521607
  • Valzania L, Ono H, Ignesti M, Cavaliere V, Bernardi F, Gamberi C, Lasko P, Gargiulo G. Drosophila 4EHP is essential for the larval-pupal transition and required in the prothoracic gland for ecdysone biosynthesis. Dev Biol 2016; 410:14-23; PMID:26721418; http://dx.doi.org/10.1016/j.ydbio.2015.12.021
  • Shchedrina VA, Kabil H, Vorbruggen G, Lee BC, Turanov AA, Hirosawa-Takamori M, Kim HY, Harshman LG, Hatfield DL, Gladyshev VN. Analyses of fruit flies that do not express selenoproteins or express the mouse selenoprotein, methionine sulfoxide reductase B1, reveal a role of selenoproteins in stress resistance. J Biol Chem 2011; 286:29449-61; PMID:21622567; http://dx.doi.org/10.1074/jbc.M111.257600