2,256
Views
8
CrossRef citations to date
0
Altmetric
Review

What does the fruitless gene tell us about nature vs. nurture in the sex life of Drosophila?

&
Pages 139-147 | Received 31 Aug 2016, Accepted 16 Nov 2016, Published online: 18 Dec 2016

References

  • Gill K. A mutation causing abnormal courtship and mating behavior in males of Drosophila melanogaster. Am Zool 1963; 3:507
  • Villella A, Gailey DA, Berwald B, Ohsima S, Barnes PT, Hall JC. Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics 1997; 147:1107-30; PMID:9383056
  • Lee G, Hall JC. Abnormalities of male-specific FRU protein and serotonin expression in the CNS of fruitless mutants in Drosophila. J Neurosci 2001; 21:513-26; PMID:11160431
  • Pan Y, Baker BS. Genetic identification and separation of innate and experience-dependent courtship behaviors in Drosophila. Cell 2014; 156:236-48; PMID:24439379; http://dx.doi.org/10.1016/j.cell.2013.11.041
  • Baker BS, Taylor BJ, Hall JC. Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell 2001; 105:13-24; PMID:11300999; http://dx.doi.org/10.1016/S0092-8674(01)00293-8
  • Dickson BJ. Wired for sex: the neurobiology of Drosophila mating decisions. Science 2008; 322:904-9; PMID:18988843; http://dx.doi.org/10.1126/science.1159276
  • Pavlou HJ, Goodwin SF. Courtship behavior in Drosophila melanogaster: towards a ‘courtship connectome’. Curr Opin Neurobiol 2012; 23:1-8; PMID:23265962; http://dx.doi.org/10.1016/j.conb.2012.09.002
  • Yamamoto D, Koganezawa M. Genes and circuits of courtship behavior in Drosophila males. Nat Rev Neurosci 2013; 14:681-92; PMID:24052176; http://dx.doi.org/10.1038/nrn3567
  • Kohatsu S, Yamamoto D. Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state. Nat Com 2015; 6:6457; http://dx.doi.org/10.1038/ncomms7457
  • Dankert H, Wang L, Hoopfer ED, Anderson DJ, Perona P. Automated monitoring and analysis of social behavior in Drosophila. Nat Methods; 6:297-303; PMID:19270697; http://dx.doi.org/10.1038/nmeth.1310
  • Kimura K-I, Hachiya T, Koganezawa M, Tazawa T, Yamamoto D. Fruitless and Doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 2008; 59:759-69; PMID:18786359; http://dx.doi.org/10.1016/j.neuron.2008.06.007
  • Koganezawa M, Haba D, Matuo T, Yamamoto D. The shaping of male courtship posture by lateralized gustatory inputs to male-specific interneurons. Curr Biol 2010; 20:1-8; PMID:20036540; http://dx.doi.org/10.1016/j.cub.2009.11.038
  • Kohatsu S, Koganezawa M, Yamamoto D. Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 2011; 69:498-508; PMID:21315260; http://dx.doi.org/10.1016/j.neuron.2010.12.017
  • Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, Anderson D. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 2014; 11:325-32; PMID:24363022; http://dx.doi.org/10.1038/nmeth.2765
  • Lee G, Foss M, Goodwin SF, Carlo T, Taylor BJ, Hall JC. Spatial, temporal, and sexually dimorphic expressions patterns of the fruitless gene in the Drosophila central nervous system. J Neurobiol. 2000; 43:404-26; PMID:10861565; http://dx.doi.org/10.1002/1097-4695(20000615)43:4%3c404::AID-NEU8%3e3.0.CO;2-D
  • Usui-Aoki K, Ito H, Ui-Tei K, Takahashi K, Lukacsovich T, Awano W, Nakata H, Piao ZF, Nilsson EE, Tomida J, Yamamoto D. Formation of the male-specific muscle in female Drosophila by ectopic fruitless expression. Nat Cell Biol 2000; 2:500-6; PMID:10934470; http://dx.doi.org/10.1038/35019537
  • Hueston CE, Olsen D, Li Q, Okuwa S, Peng B, Wu J, Volkan PC. Chromatin modulatory proteins and olfactory receptor signaling in the refinement and maintenance of fruitless expression in olfactory receptor neurons. PLoS Biol 2016; 14:e1002443; PMID:27093619; http://dx.doi.org/10.1371/journal.pbio.1002443
  • Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 2005; 15:1535-47; PMID:16139208; http://dx.doi.org/10.1016/j.cub.2005.07.034
  • Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GSXE, Benton R. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 2011; 478:236-40; PMID:21964331; http://dx.doi.org/10.1038/nature10428
  • Stockinger P, Kvitsiani D, Rotkopf S, Tirián L, Dickson BJ. Neural circuitry that governs Drosophila male courtship behavior. Cell 2005; 121:795-807; PMID:15935765; http://dx.doi.org/10.1016/j.cell.2005.04.026
  • Kondoh Y, Kaneshiro KY, Kimura K-I, Yamamoto D. Evolution of sexual dimorphism in the olfactory brain of Hawaiian Drosophila. Proc Biol Sci 2003; 270:1005-13; PMID:12803889; http://dx.doi.org/10.1098/rspb.2003.2331
  • Dweck HKM, Ebrahim SAM, Thoma M, Mohamed AAM, Keesey IW, Trona F, Lavista-Llanos S, SvatoŠ A, Sachse S, Knaden M, Hansson BS. Pheromones mediating copulation and attraction in Drosophila. Proc Natl Acad Sci U S A 2015; 112:21:E2829-35; PMID:25964351; http://dx.doi.org/10.1073/pnas.1504527112
  • Kurtovic A, Widmer A, Dickson BJ. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 2007; 446:542-6; PMID:17392786; http://dx.doi.org/10.1038/nature05672
  • Butterworth FM. Lipids of Drosophila: a newly detected lipid in the male. Science 1969; 163:1356-7; PMID:5765118; http://dx.doi.org/10.1126/science.163.3873.1356
  • Jallon JM. A few chemical words exchanged by Drosophila during courtship and mating. Behav Genet 1984; 14:441-78; PMID:6441563; http://dx.doi.org/10.1007/BF01065444
  • Kayser MS, Yue Z, Sehgal A. A critical period of sleep for development of courtship circuitry and behavior in Drosophila. Science 2014; 344:269-74; PMID:24744368; http://dx.doi.org/10.1126/science.1250553
  • Devaud JM, Acebes A, Ferrus A. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. J Neurosci 2001; 21:6274-82; PMID:11487650
  • van der Goes van Naters W, Carlson JR. Receptors and neurons for fly odors in Drosophila. Curr Biol; 2007; 17:606-12; PMID:17363256; http://dx.doi.org/10.1016/j.cub.2007.02.043
  • de Renobales M, Blomquist GJ. Biosynthesis of medium chain fatty acids in Drosophila melanogaster. Arch Biochem Biophys 1984; 228:407-14; PMID:6421238; http://dx.doi.org/10.1016/0003-9861(84)90004-3
  • Bonsquet F, Nojima T, Houot B, Chauvel I, Chaudy S, Dupas S, Yamamoto D, Ferveur J-F. Expression of desat1 in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila. Proc Natl Acad Sci U S A 2012; 109:249-54; PMID:22114190; http://dx.doi.org/10.1073/pnas.1109166108
  • Billeter JC, Atallah J, Krupp JJ, Millar JG, Levine JD. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 2009; 461:987-91; PMID:19829381; http://dx.doi.org/10.1038/nature08495
  • Agrawal S, Safarik S, Dickinson M. The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. J Exp Biol 2014; 217:2796-805; PMID:24902744; http://dx.doi.org/10.1242/jeb.105817
  • Pan Y, Meissner GW, Baker BS. Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proc Natl Acad Sci U S A 2012; 109:10065-70; PMID:22645338; http://dx.doi.org/10.1073/pnas.1207107109
  • Bath DE, Stowers JR, Hörmann D, Poehlmann A, Dickson BJ, Straw AD. FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nat Methods 2014; 11:756-62; PMID:24859752; http://dx.doi.org/10.1038/nmeth.2973
  • Wang L, Han X, Mehren J, Hiroi M, Billeter JC, Miyamaoto T, Amrein H, Levine JD, Anderson JD. Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nat Neurosci 2011; 14:757-62; PMID:21516101; http://dx.doi.org/10.1038/nn.2800
  • Clowney EJ, Iguchi S, Bussell JJ, Scheer E, Ruta V. Multimodal chemosensory circuits controlling male courtship in Drosophila. Neuron 2015; 87:1036-49; PMID:26279475; http://dx.doi.org/10.1016/j.neuron.2015.07.025
  • Lin HH, Cao DS, Sethi S, Zeng Z, Chin JSR, Chakraborty TS, Shepherd AK, Nguyen CA, Yew JY, Su C-Y, Wang JW. Hormonal modulation of pheromone detection enhances male courtship success. Neuron 2016; 90:1272-85; PMID:27263969; http://dx.doi.org/10.1016/j.neuron.2016.05.004
  • Saleem S, Ruggles PH, Abbott WK, Carney GE. Sexual experience enhances Drosophila melanogaster male mating behavior and success. PLoS One 2014; 9:e96639; PMID:24805129; http://dx.doi.org/10.1371/journal.pone.0096639
  • Baxter CM, Barnett R, Dukas R. Effects of age and experience on male mate choosiness. Ethology 2014; 121:353-63; http://dx.doi.org/10.1111/eth.12344
  • Aigaki T, Fleischmann I, Chen PS, Kubli E. Ectopic expression of sex peptide alters reproductive behavior of female D. melanogaster. Neuron 1991; 7:557-63; PMID:1931051; http://dx.doi.org/10.1016/0896-6273(91)90368-A
  • Fricke C, Green D, Mills WE, Chapman T. Age-dependent female responses to a male ejaculate signal after demographic opportunities for selection. Proc Biol Sci 2013; 280:20130428; PMID:23843383; http://dx.doi.org/10.1098/rspb.2013.0428
  • Zhuang L, Sun Y, Hu M, Wu C, La X, Chen X, Feng Y, Wang X, Hu Y, Xue L. Or47b plays a role in Drosophila males preference for younger mates. Open Biol 2016; 6:160086; PMID:27278650; http://dx.doi.org/10.1098/rsob.160086
  • Ito H, Fujitani K, Usui K, Shimizu-Nishikawa K, Tanaka S, Yamamoto D. Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proc Natl Acad Sci U S A. 1996; 93:9687-92; PMID:8790392; http://dx.doi.org/10.1073/pnas.93.18.9687
  • Ryner LC, Goodwin SF, Castrillon DH, Anand A, Villella A, Baker BS, Hall JC, Taylor BJ, Wasserman SA. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 1996; 87:1079-89; PMID:8978612; http://dx.doi.org/10.1016/S0092-8674(00)81802-4
  • Ito H, Sato K, Koganezawa M, Ote M, Matsumoto K, Hama C, Yamamoto D. Fruitless recruits two antagonistic chromatin factors to establish single-neuron sexual dimorphism. Cell 2012; 149:1327-38; PMID:22682252; http://dx.doi.org/10.1016/j.cell.2012.04.025
  • Neville MC, Nojima T, Ashley E, Parker DJ, Walker J, Southhall T, Van de Sande B, Marques AC, Fischer B, Brand AH, et al. Male-specific Fruitless isoforms target neurodevelopmental genes to specify a sexually dimorphic nervous system. Curr Biol 2014; 24:229-41; PMID:24440396; http://dx.doi.org/10.1016/j.cub.2013.11.035
  • Vernes SC. Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Sci Rep 2014; 4:4412; PMID:24642956; http://dx.doi.org/10.1038/srep04412
  • Ito H, Sato K, Kondo S, Ueda R, Yamamoto D. Fruitless represses robo1 transcription to shape male-specific neural morphology and behavior in Drosophila. Curr Biol 2016; 26:1532-42; PMID:27265393; http://dx.doi.org/10.1016/j.cub.2016.04.067
  • Masuyama K, Zhang Y, Rao Y, Wang JW. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J Neurogenet 2012; 26:89-102; PMID:22236090; http://dx.doi.org/10.3109/01677063.2011.642910
  • Yang Y, Hill KK, Hemberg M, Reddy NC, Cho HY, Guthrie AN, Oldenborg A, Heiney SA, Ohmae S, Medina JF, et al. Chromatin remodeling inactivates activity genes and regulates neural coding. Science 2016; 353:300-5; PMID:27418512; http://dx.doi.org/10.1126/science.aad4225
  • Xu PS, Lee D, Holy TE. Experience-dependent plasticity drives individual differences in pheromone-sensing neurons. Neuron 2016; 91:878-92; PMID:27537487; http://dx.doi.org/10.1016/j.neuron.2016.07.034
  • Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 2013; 26:101-12; PMID:23792147; http://dx.doi.org/10.1016/j.devcel.2013.05.020
  • Weaver ICG, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Secckl JR, Dymov S, Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7:847-54; PMID:15220929; http://dx.doi.org/10.1038/nn1276
  • Meaney M. Environmental programming of phenotypic diversity in female reproductive strategies. Adv Genet 2007; 59:173-215; PMID:17888799; http://dx.doi.org/10.1016/S0065-2660(07)59007-3
  • Lüpold S, Manier MK, Ala-Honkola O, Belote JM, Pitnick S. Male Drosophila melanogaster adjust ejaculate size based on female mating stats, fecundity, and age. Behav Ecol 2011; 22:184-91; http://dx.doi.org/10.1093/beheco/arq193
  • Parker GA, Pizzari T. Sperm competition and ejaculate economics. Biol Rev Camb Philos Soc 2010; 85:897-934; PMID:20560928; http://dx.doi.org/10.1111/j.1469-185X.2010.00140.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.