1,824
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster

, , , , , , & show all
Pages 75-95 | Received 01 Aug 2016, Accepted 05 Dec 2016, Published online: 12 Jan 2017

References

  • Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med 2016; 35:186-202; PMID:26151230; http://dx.doi.org/10.3109/15368378.2015.1043557
  • Sastre J, Pallardo FV, Vina J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 2000; 49:427-35; PMID:10902575; http://dx.doi.org/10.1080/152165400410281
  • Mracek T, Pecina P, Vojtiskova A, Kalous M, Sebesta O, Houstek J. Two components in pathogenic mechanism of mitochondrial ATPase deficiency: energy deprivation and ROS production. Exp Gerontol 2006; 41:683-7; PMID:16581217; http://dx.doi.org/10.1016/j.exger.2006.02.009
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82:47-95; PMID:11773609; http://dx.doi.org/10.1152/physrev.00018.2001
  • Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev 2016; 2016:1245049; PMID:27478531
  • De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 2009; 4:e6446; PMID:19649291; http://dx.doi.org/10.1371/journal.pone.0006446
  • Burlaka A, Selyuk M, Gafurov M, Lukin S, Potaskalova V, Sidorik E. Changes in mitochondrial functioning with electromagnetic radiation of ultra high frequency as revealed by electron paramagnetic resonance methods. Int J Radiat Biol 2014; 90:357-62; PMID:24597749; http://dx.doi.org/10.3109/09553002.2014.899448
  • Friedman J, Kraus S, Hauptman Y, Schiff Y, Seger R. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J 2007; 405:559-68; PMID:17456048; http://dx.doi.org/10.1042/BJ20061653
  • Zhao TY, Zou SP, Knapp PE. Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci Lett 2007; 412:34-8; PMID:17187929; http://dx.doi.org/10.1016/j.neulet.2006.09.092
  • Zalata A, El-Samanoudy AZ, Shaalan D, El-Baiomy Y, Mostafa T. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm. Int J Fertil Steril 2015; 9:129-36; PMID:25918601
  • Zeng Q, Chen G, Weng Y, Wang L, Chiang H, Lu D, Xu Z. Effects of global system for mobile communications 1800 MHz radiofrequency electromagnetic fields on gene and protein expression in MCF-7 cells. Proteomics 2006; 6:4732-8; PMID:16888767; http://dx.doi.org/10.1002/pmic.200600234
  • Whitehead TD, Moros EG, Brownstein BH, Roti Roti JL. The number of genes changing expression after chronic exposure to code division multiple access or frequency DMA radiofrequency radiation does not exceed the false-positive rate. Proteomics 2006; 6:4739-44; PMID:16933338; http://dx.doi.org/10.1002/pmic.200600051
  • Belyaev IY, Koch CB, Terenius O, Roxstrom-Lindquist K, Malmgren LO, W HS, Salford LG, Persson BR. Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics 2006; 27:295-306; PMID:16511873; http://dx.doi.org/10.1002/bem.20216
  • McNamee JP, Bellier PV, Konkle AT, Thomas R, Wasoontarajaroen S, Lemay E, Gajda GB. Analysis of gene expression in mouse brain regions after exposure to 1.9 GHz radiofrequency fields. Int J Radiat Biol 2016; 92:338-50; PMID:27028625; http://dx.doi.org/10.3109/09553002.2016.1159353
  • Paparini A, Rossi P, Gianfranceschi G, Brugaletta V, Falsaperla R, De Luca P, Romano Spica V. No evidence of major transcriptional changes in the brain of mice exposed to 1800 MHz GSM signal. Bioelectromagnetics 2008; 29:312-23; PMID:18175331; http://dx.doi.org/10.1002/bem.20399
  • Leszczynski D. Mobile phones, precautionary principle, and future research. Lancet 2001; 358:1733; PMID:11728587; http://dx.doi.org/10.1016/S0140-6736(01)06757-5
  • Non-ionizing radiation, Part 2: Radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum 2013; 102:1-460; PMID:24772662
  • Hardell L, Carlberg M. Using the Hill viewpoints from 1965 for evaluating strengths of evidence of the risk for brain tumors associated with use of mobile and cordless phones. Rev Environ Health 2013; 28:97-106; PMID:24192496; http://dx.doi.org/10.1515/reveh-2013-0006
  • Pritchett TL, Tanner EA, McCall K. Cracking open cell death in the Drosophila ovary. Apoptosis 2009; 14:969-79; PMID:19533361; http://dx.doi.org/10.1007/s10495-009-0369-z
  • Goodman R, Weisbrot D, Uluc A, Henderson A. Transcription in Drosophila-melanogaster salivary-gland cells is altered following exposure to low-frequency electromagnetic-fields - Analysis of chromosome-3L and chromosome-X. Bioelectrochemistry and Bioenergetics 1992a; 343:311-318.
  • Goodman R, Weisbrot D, Uluc A, Henderson A. Transcription in Drosophila melanogaster salivary gland cells is altered following exposure to low-frequency electromagnetic fields: analysis of chromosome 3R. Bioelectromagnetics 1992b; 13:111-8; PMID:1590811; http://dx.doi.org/10.1002/bem.2250130205
  • Weisbrot D, Uluc A, Henderson A, Goodman R. Transcription in Drosophila-melanogaster salivary-gland cells is altered following exposure to low-frequency electromagnetic-fields - analysis of chromosome-2R and chromosome-2L. Bioelectrochemistry and Bioenergetics 1993; 31:39-47; http://dx.doi.org/10.1016/0302-4598(93)86104-9
  • Li SS, Zhang ZY, Yang CJ, Lian HY, Cai P. Gene expression and reproductive abilities of male Drosophila melanogaster subjected to ELF-EMF exposure. Mutat Res 2013; 758:95-103; PMID:24157427; http://dx.doi.org/10.1016/j.mrgentox.2013.10.004
  • Panagopoulos DJ, Karabarbounis A, Margaritis LH. Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster. Electromagn Biol Med 2004; 23:29-43; http://dx.doi.org/10.1081/JBC-120039350
  • Weisbrot D, Lin H, Ye L, Blank M, Goodman R. Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster. J Cell Biochem 2003; 89:48-55; PMID:12682907; http://dx.doi.org/10.1002/jcb.10480
  • Sagioglou NE MA, Giannarakis IK, Skouroliakou AS, Margaritis LH. Apoptotic cell death during Drosophila oogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure. Electromagn Biol Med 2016; 35:40-53; PMID:24236537; http://dx.doi.org/10.3109/15368378.2014.971959
  • Margaritis LH, Manta AK, Kokkaliaris KD, Schiza D, Alimisis K, Barkas G, Georgiou E, Giannakopoulou O, Kollia I, Kontogianni G, et al. Drosophila oogenesis as a bio-marker responding to EMF sources. Electromagn Biol Med 2014; 33:165-89; PMID:23915130; http://dx.doi.org/10.3109/15368378.2013.800102
  • Manta AK, Stravopodis DJ, Papassideri IS, Margaritis LH. Reactive oxygen species elevation and recovery in Drosophila bodies and ovaries following short-term and long-term exposure to DECT base EMF. Electromagn Biol Med 2014; 33:118-31; PMID:23781995; http://dx.doi.org/10.3109/15368378.2013.791991
  • Chavdoula ED, Panagopoulos DJ, Margaritis LH. Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation: Detection of apoptotic cell-death features. Mutat Res 2010; 700:51-61; PMID:20472095; http://dx.doi.org/10.1016/j.mrgentox.2010.05.008
  • Chacon MA, Varela-Nallar L, Inestrosa NC. Frizzled-1 is involved in the neuroprotective effect of Wnt3a against Abeta oligomers. J Cell Physiol 2008; 217:215-27; PMID:18521822; http://dx.doi.org/10.1002/jcp.21497
  • Briones N, Dinu V. Data mining of high density genomic variant data for prediction of Alzheimer's disease risk. BMC Med Genet 2012; 13:7; PMID:22273362; http://dx.doi.org/10.1186/1471-2350-13-7
  • Kim YJ, Yi Y, Sapp E, Wang Y, Cuiffo B, Kegel KB, Qin ZH, Aronin N, DiFiglia M. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A 2001; 98:12784-9; PMID:11675509; http://dx.doi.org/10.1073/pnas.221451398
  • Gafni J, Ellerby LM. Calpain activation in Huntington's disease. J Neurosci 2002; 22:4842-9; PMID:12077181
  • Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res 2015; 43:D726-36; PMID:25348401; http://dx.doi.org/10.1093/nar/gku967
  • Kesari KK, Kumar S, Behari J. Effects of radiofrequency electromagnetic wave exposure from cellular phones on the reproductive pattern in male Wistar rats. Appl Biochem Biotechnol 2011; 164:546-59; PMID:21240569; http://dx.doi.org/10.1007/s12010-010-9156-0
  • Liu Q, Si T, Xu X, Liang F, Wang L, Pan S. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod Health 2015; 12:65; PMID:26239320; http://dx.doi.org/10.1186/s12978-015-0062-3
  • Remondini D, Nylund R, Reivinen J, Poulletier de Gannes F, Veyret B, Lagroye I, Haro E, Trillo MA, Capri M, Franceschi C, et al. Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics 2006; 6:4745-54; PMID:16878293; http://dx.doi.org/10.1002/pmic.200500896
  • van Bergeijk P, Heimiller J, Uyetake L, Su TT. Genome-wide expression analysis identifies a modulator of ionizing radiation-induced p53-independent apoptosis in Drosophila melanogaster. PLoS One 2012; 7:e36539; PMID:22666323; http://dx.doi.org/10.1371/journal.pone.0036539
  • Cai W, Rudolph JL, Harrison SM, Jin L, Frantz AL, Harrison DA, Andres DA. An evolutionarily conserved Rit GTPase-p38 MAPK signaling pathway mediates oxidative stress resistance. Mol Biol Cell 2011; 22:3231-41; PMID:21737674; http://dx.doi.org/10.1091/mbc.E11-05-0400
  • Ma X, Li W, Yu H, Yang Y, Li M, Xue L, Xu T. Bendless modulates JNK-mediated cell death and migration in Drosophila. Cell Death Differ 2014; 21:407-15; PMID:24162658; http://dx.doi.org/10.1038/cdd.2013.154
  • Lee KS, Choi JS, Hong SY, Son TH, Yu K. Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics 2008; 29:371-9; PMID:18286519; http://dx.doi.org/10.1002/bem.20395
  • Kim JH, Huh YH, Kim HR. Induction of Autophagy in the Striatum and Hypothalamus of Mice after 835 MHz Radiofrequency Exposure. PLoS One 2016; 11:e0153308; PMID:27073885; http://dx.doi.org/10.1371/journal.pone.0153308
  • Jenkins VK, Timmons AK, McCall K. Diversity of cell death pathways: insight from the fly ovary. Trends Cell Biol 2013; 23:567-74; PMID:23968895; http://dx.doi.org/10.1016/j.tcb.2013.07.005
  • Nezis IP, Lamark T, Velentzas AD, Rusten TE, Bjorkoy G, Johansen T, Papassideri IS, Stravopodis DJ, Margaritis LH, Stenmark H, et al. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy 2009; 5:298-302; PMID:19066465; http://dx.doi.org/10.4161/auto.5.3.7454
  • Wang C, Liu Z, Huang X. Rab32 is important for autophagy and lipid storage in Drosophila. PLoS One 2012; 7:e32086; PMID:22348149; http://dx.doi.org/10.1371/journal.pone.0032086
  • Lee CY, Baehrecke EH. Steroid regulation of autophagic programmed cell death during development. Development 2001; 128:1443-55; PMID:11262243
  • Etchegaray JI, Timmons AK, Klein AP, Pritchett TL, Welch E, Meehan TL, Li C, McCall K. Draper acts through the JNK pathway to control synchronous engulfment of dying germline cells by follicular epithelial cells. Development 2012; 139:4029-39; PMID:22992958; http://dx.doi.org/10.1242/dev.082776
  • Postlethwait JH, Giorgi F. Vitellogenesis in insects. Dev Biol (N Y 1985) 1985; 1:85-126; PMID:3917207
  • DiMario PJ, Mahowald AP. Female sterile (1) yolkless: a recessive female sterile mutation in Drosophila melanogaster with depressed numbers of coated pits and coated vesicles within the developing oocytes. J Cell Biol 1987; 105:199-206; PMID:2886508; http://dx.doi.org/10.1083/jcb.105.1.199
  • Schonbaum CP, Perrino JJ, Mahowald AP. Regulation of the vitellogenin receptor during Drosophila melanogaster oogenesis. Mol Biol Cell 2000; 11:511-21; PMID:10679010; http://dx.doi.org/10.1091/mbc.11.2.511
  • Ye W, Wang F, Zhang W, Fang N, Zhao W, Wang J. Effect of Mobile Phone Radiation on Cardiovascular Development of Chick Embryo. Anat Histol Embryol 2016; 45:197-208; PMID:26171674; http://dx.doi.org/10.1111/ahe.12188
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279:L1005-28; PMID:11076791
  • van der Horst A, Burgering BM. Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 2007; 8:440-50; PMID:17522590; http://dx.doi.org/10.1038/nrm2190
  • Gorlach A, Dimova EY, Petry A, Martinez-Ruiz A, Hernansanz-Agustin P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 2015; 6:372-85; PMID:26339717; http://dx.doi.org/10.1016/j.redox.2015.08.016
  • Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014; 24:R453-62; PMID:24845678; http://dx.doi.org/10.1016/j.cub.2014.03.034
  • Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 2011; 21:103-15; PMID:21187859; http://dx.doi.org/10.1038/cr.2010.178
  • Tohidi FZ, Toosi MHB, Azimian H, Khademi S, Fardid R, Sarab GA. The gene expression level of p53 and p21 in mouse brain exposed to radiofrequency field. International Journal of Radiation Research 2015; 13:337-343.
  • Tripathy BC, Oelmuller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav 2012; 7:1621-33; PMID:23072988; http://dx.doi.org/10.4161/psb.22455
  • Sharma VP, Singh HP, Kohli RK, Batish DR. Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. Sci Total Environ 2009; 407:5543-7; PMID:19682728; http://dx.doi.org/10.1016/j.scitotenv.2009.07.006
  • Singh HP, Sharma VP, Batish DR, Kohli RK. Cell phone electromagnetic field radiations affect rhizogenesis through impairment of biochemical processes. Environ Monit Assess 2012; 184:1813-21; PMID:21562792; http://dx.doi.org/10.1007/s10661-011-2080-0
  • Tkalec M, Malaric K, Pevalek-Kozlina B. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. Sci Total Environ 2007; 388:78-89; PMID:17825879; http://dx.doi.org/10.1016/j.scitotenv.2007.07.052
  • Radiofrequency electromagnetic fields (300 Hz-300 GHz) summary of an advisory report. Health Council of The Netherlands: Radiofrequency Radiation Committee. Health Phys 1998; 75:51-5; PMID:9645665
  • Wang Z, Seebauer EG. Temperature-dependent energy thresholds for ion-stimulated defect formation in solids. Phys Rev Lett 2005; 95:015501; PMID:16090628; http://dx.doi.org/10.1103/PhysRevLett.95.015501
  • Zhang ZY, Zhang J, Yang CJ, Lian HY, Yu H, Huang XM, Cai P. Coupling Mechanism of Electromagnetic Field and Thermal Stress on Drosophila melanogaster. PLoS One 2016; 11:e0162675; PMID:27611438; http://dx.doi.org/10.1371/journal.pone.0162675
  • Kristiansen KA, Jensen PE, Moller IM, Schulz A. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy. Physiol Plant 2009; 136:369-83; PMID:19493304; http://dx.doi.org/10.1111/j.1399-3054.2009.01243.x
  • McCall K, Peterson JS. Detection of apoptosis in Drosophila. Methods Mol Biol 2004; 282:191-205; PMID:15105566
  • Arama E, Steller H. Detection of apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and acridine orange in Drosophila embryos and adult male gonads. Nat Protoc 2006; 1:1725-31; PMID:17487155; http://dx.doi.org/10.1038/nprot.2006.235
  • Denton D, Mills K, Kumar S. Methods and protocols for studying cell death in Drosophila. Methods Enzymol 2008; 446:17-37; PMID:18603114; http://dx.doi.org/10.1016/S0076-6879(08)01602-9
  • Huang da W SB, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37:1-13; PMID:19033363; http://dx.doi.org/10.1093/nar/gkn923
  • Huang da W SB, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4:44-57; PMID:19131956; http://dx.doi.org/10.1038/nprot.2008.211
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27-30; PMID:10592173; http://dx.doi.org/10.1093/nar/28.1.27
  • Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014; 42:D199-205; PMID:24214961; http://dx.doi.org/10.1093/nar/gkt1076
  • Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 2013; 8:1551-66; PMID:23868073; http://dx.doi.org/10.1038/nprot.2013.092
  • Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 2013; 41:D377-86; PMID:23193289; http://dx.doi.org/10.1093/nar/gks1118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.