1,441
Views
2
CrossRef citations to date
0
Altmetric
Extra View

The COP9 signalosome inhibits Cullin-RING E3 ubiquitin ligases independently of its deneddylase activity

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 118-126 | Received 14 Nov 2017, Accepted 04 Jan 2018, Published online: 09 Feb 2018

References

  • Hartl FU. Cellular homeostasis and aging. Annu Rev Biochem. 2016;85:1–4. doi:10.1146/annurev-biochem-011116-110806
  • Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011;12:220. doi:10.1186/gb-2011-12-4-220
  • Freeman AA, Mandilaras K, Missirlis F, et al. An emerging role for Cullin-3 mediated ubiquitination in sleep and circadian rhythm: insights from Drosophila. Fly. 2013;7:39–43. doi:10.4161/fly.23506
  • Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol. 2016;73:99–110. doi:10.1016/j.biocel.2016.02.005
  • Krausova M, Korinek V. Wnt signaling in adult intestinal stem cells and cancer. Cell Signal. 2014;26:570–9. doi:10.1016/j.cellsig.2013.11.032
  • Bettegowda C, Agrawal N, Jiao Y, et al. Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science. 2011;333:1453–5. doi:10.1126/science.1210557
  • Dissanayake K, Toth R, Blakey J, et al. ERK/p90(RSK)/14–3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor Capicua. Biochem J. 2011;433:515–25. doi:10.1042/BJ20101562
  • Okimoto RA, Breitenbuecher F, Olivas VR, et al. Inactivation of Capicua drives cancer metastasis. Nat Genet. 2016;49:87–96. doi:10.1038/ng.3728
  • Suisse A, He D, Legent K, et al. COP9 signalosome subunits protect Capicua from MAPK-dependent and -independent mechanisms of degradation. Development. 2017;144:2673–82. doi:10.1242/dev.148767
  • Merlet J, Burger J, Gomes JE, et al. Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci. 2009;66:1924–38. doi:10.1007/s00018-009-8712-7
  • Boh BK, Smith PG, Hagen T. Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. J Mol Biol. 2011;409:136–45. doi:10.1016/j.jmb.2011.03.023.
  • Duda DM, Borg LA, Scott DC, et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell. 2008;134:995–1006. doi:10.1016/j.cell.2008.07.022
  • Saha A, Deshaies RJ. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell. 2008;32:21–31. doi:10.1016/j.molcel.2008.08.021
  • Ou CY, Lin YF, Chen YJ, et al. Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev. 2002;16:2403–14. doi:10.1101/gad.1011402
  • Nawrocki ST, Griffin P, Kelly KR, et al. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs. 2012;21:1563–73. doi:10.1517/13543784.2012.707192
  • Rozen S, Fuzesi-Levi MG, Ben-Nissan G, et al. CSNAP is a stoichiometric subunit of the COP9 signalosome. Cell Rep. 2015;13:585–98. doi:10.1016/j.celrep.2015.09.021
  • Lingaraju GM, Bunker RD, Cavadini S, et al. Crystal structure of the human COP9 signalosome. Nature. 2014;512:161–5. doi:10.1038/nature13566
  • Schwechheimer C, Serino G, Callis J, et al. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science. 2001;292:1379–82. doi:10.1126/science.1059776.
  • Cope GA, Suh GS, Aravind L, et al. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science. 2002;298:608–11. doi:10.1126/science.1075901
  • Wei N, Deng XW. The COP9 signalosome. Annu Rev Cell Dev Biol. 2003;19:261–86. doi:10.1146/annurev.cellbio.19.111301.112449
  • Zheng J, Yang X, Harrell JM, et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell. 2002;10:1519–26. doi:10.1016/S1097-2765(02)00784-0
  • Liu J, Furukawa M, Matsumoto T, et al. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell. 2002;10:1511–8. doi:10.1016/S1097-2765(02)00783-9
  • Pierce NW, Lee JE, Liu X, et al. Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell. 2013;153:206–15. doi:10.1016/j.cell.2013.02.024
  • Zemla A, Thomas Y, Kedziora S, et al. CSN- and CAND1-dependent remodelling of the budding yeast SCF complex. Nat Commun. 2013;4:1641. doi:10.1038/ncomms2628
  • Wu S, Zhu W, Nhan T, et al. CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun. 2013;4:1642. doi:10.1038/ncomms2636
  • Zhou C, Wee S, Rhee E, et al. Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzyme Ubp12p. Mol Cell. 2003;11:927–38. doi:10.1016/S1097-2765(03)00136-9
  • Wu JT, Lin HC, Hu YC, et al. Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation. Nat Cell Biol. 2005;7:1014–20. doi:10.1038/ncb1301
  • Wu J-T, Lin W-H, Chen W-Y, et al. CSN-mediated deneddylation differentially modulates Ci(155) proteolysis to promote Hedgehog signalling responses. Nat Commun. 2011;182. doi:10.1038/ncomms1185
  • Harari-Steinberg O, Cantera R, Denti S, et al. COP9 signalosome subunit 5 (CSN5/Jab1) regulates the development of the Drosophila immune system: effects on Cactus, Dorsal and hematopoiesis. Genes Cells. 2007;12:183–95. doi:10.1111/j.1365-2443.2007.01049.x
  • Knowles A, Koh K, Wu JT, et al. The COP9 signalosome is required for light-dependent Timeless degradation and Drosophila clock resetting. J Neurosci. 2009;29:1152–62. doi:10.1523/JNEUROSCI.0429-08.2009
  • Doronkin S, Djagaeva I, Beckendorf SK. CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint. Development. 2002;129:5053–64.
  • Enchev RI, Scott DC, da Fonseca PC, et al. Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep. 2012;2:616–27. doi:10.1016/j.celrep.2012.08.019
  • Harari-Steinberg O, Chamovitz DA. The COP9 signalosome: mediating between kinase signaling and protein degradation. Curr Protein Pept Sci. 2004;5:185–9. doi:10.2174/1389203043379792
  • Chamovitz DA. Revisiting the COP9 signalosome as a transcriptional regulator. EMBO Rep. 2009;10:352–8. doi:10.1038/embor.2009.33
  • Dubiel D, Rockel B, Naumann M, et al. Diversity of COP9 signalosome structures and functional consequences. FEBS Lett. 2015;589:2507–13. doi:10.1016/j.febslet.2015.06.007
  • Pick E, Bramasole L. Moonlighting and pleiotropy within two regulators of the degradation machinery: the proteasome lid and the CSN. Biochem Soc Trans. 2014;42:1786–91. doi:10.1042/BST20140227
  • Lee JH, Yi L, Li J, et al. Crystal structure and versatile functional roles of the COP9 signalosome subunit 1. Proc Natl Acad Sci U S A. 2013;110:11845–50. doi:10.1073/pnas.1302418110
  • Cavadini S, Fischer ES, Bunker RD, et al. Cullin-RING ubiquitin E3 ligase regulation by the COP9 signalosome. Nature. 2016;531:598–603. doi:10.1038/nature17416
  • Mosadeghi R, Reichermeier KM, Winkler M, et al. Structural and kinetic analysis of the COP9-Signalosome activation and the cullin-RING ubiquitin ligase deneddylation cycle. Elife. 2016;5:e12102. doi:10.7554/eLife.12102
  • Pan L, Wang S, Lu T, et al. Protein competition switches the function of COP9 from self-renewal to differentiation. Nature. 2014;514:233–6. doi:10.1038/nature13562
  • Chen J, Shin JH, Zhao R, et al. CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 2014;5:5384. doi:10.1038/ncomms6384
  • Dressel U, Thormeyer D, Altincicek B, et al. Alien, a highly conserved protein with characteristics of a corepressor for members of the nuclear hormone receptor superfamily. Mol Cell Biol. 1999;19:3383–94. doi:10.1128/MCB.19.5.3383
  • Hong W, Li J, Wang B, et al. Epigenetic involvement of Alien/ESET complex in thyroid hormone-mediated repression of E2F1 gene expression and cell proliferation. Biochem Biophys Res Commun. 2011;415:650–5. doi:10.1016/j.bbrc.2011.10.130
  • Zhang W, Ni P, Mou C, et al. Cops2 promotes pluripotency maintenance by stabilizing nanog protein and repressing transcription. Sci Rep. 2016;6:26804. doi:10.1038/srep26804
  • Tsuge T, Matsui M, Wei N. The subunit 1 of the COP9 signalosome suppresses gene expression through its N-terminal domain and incorporates into the complex through the PCI domain. J Mol Biol. 2001;305:1–9. doi:10.1006/jmbi.2000.4288
  • Menon S, Chi H, Zhang H, et al. COP9 signalosome subunit 8 is essential for peripheral T cell homeostasis and antigen receptor-induced entry into the cell cycle from quiescence. Nat Immunol. 2007;8:1236–45. doi:10.1038/ni1514.
  • Ullah Z, Buckley MS, Arnosti DN, et al. Retinoblastoma protein regulation by the COP9 signalosome. Mol Biol Cell. 2007;18:1179–86. doi:10.1091/mbc.E06-09-0790
  • Schweitzer K, Naumann M. CSN-associated USP48 confers stability to nuclear NF-kappaB/RelA by trimming K48-linked Ub-chains. Biochim Biophys Acta. 2015;1853:453–69. doi:10.1016/j.bbamcr.2014.11.028
  • Huang X, Langelotz C, Hetfeld-Pechoc BKJ, et al. The COP9 signalosome mediates beta-catenin degradation by deneddylation and blocks adenomatous polyposis coli destruction via USP15. J Mol Biol. 2009;391:691–702. doi:10.1016/j.jmb.2009.06.066
  • Schweitzer K, Bozko PM, Dubiel W, et al. CSN controls NF-kappaB by deubiquitinylation of IkappaBalpha. EMBO J. 2007;26:1532–41. doi:10.1038/sj.emboj.7601600
  • Astigarraga S, Grossman R, Diaz-Delfin J, et al. A MAPK docking site is critical for downregulation of Capicua by Torso and EGFR RTK signaling. EMBO J. 2007;26:668–77. doi:10.1038/sj.emboj.7601532
  • Coleman KE, Bekes M, Chapman JR, et al. SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function. Elife. 2017;6:e24325. doi:10.7554/eLife.24325
  • Bekes M, Okamoto K, Crist SB, et al. DUB-resistant ubiquitin to survey ubiquitination switches in mammalian cells. Cell Rep. 2013;5:826–38. doi:10.1016/j.celrep.2013.10.008
  • Wada H, Kito K, Caskey LS, et al. Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem Biophys Res Commun. 1998;251:688–92. doi:10.1006/bbrc.1998.9532
  • Jiang J, Struhl G. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature. 1998;391:493–6. doi:10.1038/35154
  • Fischer ES, Scrima A, Bohm K, et al. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell. 2011;147:1024–39. doi:10.1016/j.cell.2011.10.035
  • Liu Q, Zhou Y, Tang R, et al. Increasing the un-neddylated Cullin1 portion rescues the csn phenotypes by stabilizing adaptor modules to drive SCF assembly. Mol Cell Biol. 2017;37:e00109–17. doi:10.1128/MCB.00109-17.
  • Chan Y, Yoon J, Wu JT, et al. DEN1 deneddylates non-cullin proteins in vivo. J Cell Sci. 2008;121:3218–23. doi:10.1242/jcs.030445
  • Kim K, Yoon J, Yim J, et al. Deneddylase 1 regulates deneddylase activity of the Cop9 signalosome in Drosophila melanogaster. Insect Sci. 2015;24:27–34. doi:10.1111/1744-7917.12274
  • Broemer M, Tenev T, Rigbolt KT, et al. Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell. 2010;40:810–22. doi:10.1016/j.molcel.2010.11.011
  • Bosu DR, Kipreos ET. Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Div. 2008;3:7. doi:10.1186/1747-1028-3-7
  • Gummlich L, Rabien A, Jung K, et al. Deregulation of the COP9 signalosome-cullin-RING ubiquitin-ligase pathway: mechanisms and roles in urological cancers. Int J Biochem Cell Biol. 2013;45:1327–37. doi:10.1016/j.biocel.2013.03.023
  • Tanaka T, Nakatani T, Kamitani T. Negative regulation of NEDD8 conjugation pathway by novel molecules and agents for anticancer therapy. Curr Pharm Des. 2013;19:4131–9. doi:10.2174/1381612811319220017
  • Zhou H, Lu J, Liu L, et al. A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks Cullin 3 neddylation. Nat Commun. 2017;8:1150. doi:10.1038/s41467-017-01243-7
  • Schlierf A, Altmann E, Quancard J, et al. Targeted inhibition of the COP9 signalosome for treatment of cancer. Nat Commun. 2016;7:13166. doi:10.1038/ncomms13166
  • Hazelett DJ, Bourouis M, Walldorf U, et al. decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development. 1998;125:3741–51.
  • Motzny CK, Holmgren R. The Drosophila Cubitus interruptus protein and its role in the wingless and hedgehog signal transduction pathways. Mech Dev. 1995;52:137–50. doi:10.1016/0925-4773(95)00397-J

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.