5,688
Views
10
CrossRef citations to date
0
Altmetric
Review

Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis

& ORCID Icon
Pages 275-298 | Received 30 Jan 2022, Accepted 03 Jun 2022, Published online: 29 Jun 2022

References

  • Rosenzweig M, Brennan KM, Tayler TD, et al. The Drosophilaortholog of vertebrate TRPA1 regulates thermotaxis. Gene Dev. 2005;19(4):419–424.
  • Viswanath V, Story GM, Peier AM, et al. Opposite thermosensor in fruitfly and mouse. Nature. 2003;423(6942):822–823.
  • Kim SE, Coste B, Chadha A, et al. The role of drosophila piezo in mechanical nociception. Nature. 2012;483(7388):209–212.
  • Adams MD, Celniker SE, Holt RA, et al. The genome sequence of drosophila melanogaster. Science. 2000;287(5461):2185–2195.
  • Rubin GM, Yandell MD, Wortman JR, et al. Comparative genomics of the eukaryotes. Science. 2000;287(5461):2204–2215.
  • Reiter LT, Potocki L, Chien S, et al. A systematic analysis of human disease-associated gene sequences in drosophila melanogaster. Genome Res. 2001;11(6):1114–1125.
  • Yamamoto S, Jaiswal M, Charng W-L, et al. A drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell. 2014;159(1):200–214.
  • Sanes JR, Zipursky SL. Design principles of insect and vertebrate visual systems. Neuron. 2010;66(1):15–36.
  • Sanes JR, Zipursky SL. Synaptic specificity, recognition molecules, and assembly of neural circuits. Cell. 2020;181(3):536–556.
  • Ganetzky B, Flanagan JR. On the relationship between senescence and age-related changes in two wild-type strains of Drosophila melanogaster. Exp Gerontol. 1978;13(3–4):189–196.
  • Bourg EL, Lints FA. Hypergravity and aging in drosophila melanogaster. 4. climbing activity. Gerontology. 1992;38(1–2):59–64.
  • Yamazaki D, Horiuchi J, Nakagami Y, et al. The drosophila DC0 mutation suppresses age-related memory impairment without affecting lifespan. Nat Neurosci. 2007;4:478–484.
  • Haddadi M, Jahromi SR, Sagar BKC, et al. Brain aging, memory impairment and oxidative stress: a study in drosophila melanogaster. Behav Brain Res. 2014;259:60–69.
  • Hussain A, Pooryasin A, Zhang M, et al. Inhibition of oxidative stress in cholinergic projection neurons fully rescues aging-associated olfactory circuit degeneration in drosophila. Elife. 2018;7:e32018.
  • Davie K, Janssens J, Koldere D, et al. A single-cell transcriptome atlas of the aging drosophila brain. Cell. 2018;174(4):982–998.e20.
  • Kaplan WD, Trout WE. The behavior of four neurological mutants of drosophila. Genetics. 1969;61(2):399–409.
  • Tempel BL, Papazian DM, Schwarz TL, et al. Sequence of a probable potassium channel component encoded at shaker locus o drosophila. Science. 1987;237(4816):770–775.
  • Warmke J, Drysdale R, Ganetzky B. A distinct potassium channel polypeptide encoded by the drosophila eag locus. Science. 1991;252(5012):1560–1562.
  • Brüggemann A, Pardo LA, Stühmer W, et al. Ether-à-go-go encodes a voltage-gated channel permeable to K+ and Ca2+ and modulated by cAMP. Nature. 1993;365(6445):445–448.
  • Curran ME, Splawski I, Timothy KW, et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.
  • Jentsch TJ. Neuronal KCNQ potassium channels:physislogy and role in disease. Nat Rev Neurosci. 2000;1(1):21–30.
  • Waters MF, Minassian NA, Stevanin G, et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat Genet. 2006;38(4):447–451.
  • Paulson H. Chapter 27 machado–joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurology. 2012;103:437–449.
  • Warrick JM, Paulson HL, Gray-Board GL, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in drosophila. Cell. 1998;93:939–949.
  • Jackson GR, Salecker I, Dong X, et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of drosophila photoreceptor neurons. Neuron. 1998;21(3):633–642.
  • Ellis MC, O’Neill EM, Rubin GM. Expression of drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development. 1993;119(3):855–865.
  • Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in drosophila. Science. 2000;287(5459):1837–1840.
  • Feany MB, Bender WW. A drosophila model of Parkinson’s disease. Nature. 2000;404(6776):394–398.
  • Auluck PK, Chan HYE, Trojanowski JQ, et al. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 2002;295(5556):865–868.
  • Luo L, Liao YJ, Jan LY, et al. Distinct morphogenetic functions of similar small GTPases: drosophila drac1 is involved in axonal outgrowth and myoblast fusion. Gene Dev. 1994;8(15):1787–1802.
  • Li H, Chaney S, Forte M, et al. Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr Biol. 2000;10(4):211–214.
  • Vilariño-Güell C, Wider C, Ross OA, et al. VPS35 mutations in parkinson disease. Am J Hum Genetics. 2011;89(1):162–167.
  • Zimprich A, Benet-Pagès A, Struhal W, et al. A mutation in vps35, encoding a subunit of the retromer complex, causes late-onset parkinson disease. Am J Hum Genetics. 2011;89(1):168–175.
  • Korolchuk S VI, Gómez-Llorente MM, Rocha C, et al. Drosophila Vps35 function is necessary for normal endocytic trafficking and actin cytoskeleton organisation. J Cell Sci. 2007;120(24):4367–4376.
  • Miura E, Hasegawa T, Konno M, et al. VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a drosophila model of Parkinson’s disease. Neurobiol Dis. 2014;71:1–13.
  • Lin G, Lee P-T, Chen K, et al. Phospholipase PLA2G6, a parkinsonism-associated gene, affects vps26 and vps35, retromer function, and ceramide levels, similar to α-synuclein gain. Cell Metab. 2018;28(4):605–618.e6.
  • Inoshita T, Arano T, Hosaka Y, et al. Vps35 in cooperation with LRRK2 regulates synaptic vesicle endocytosis through the endosomal pathway in drosophila. Hum Mol Genet. 2017;26(15):2933–2948.
  • Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its e3 ubiquitin-protein ligase activity. J Biol Chem. 2000;275(46):35661–35664.
  • Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25(3):302–305.
  • Zhang Y, Gao J, Chung KKK, et al. Parkin functions as an E2-dependent ubiquitin– protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci. 2000;97(24):13354–13359.
  • Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–608.
  • Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci. 2003;100(7):4078–4083.
  • Yang Y, Nishimura I, Imai Y, et al. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by pael-R in drosophila. Neuron. 2003;37(6):911–924.
  • Haywood AF, BE S. parkin counteracts symptoms in a Drosophila model of Parkinson’s disease. Bmc Neurosci. 2004;5(1):14.
  • Beutler E. Gaucher’s disease. Compr Ther. 1980;6(1):65–68: https://pubmed.ncbi.nlm.nih.gov/7471682/
  • Neudorfer O, Giladi N, Elstein D, et al. Occurrence of Parkinson’s syndrome in type 1 Gaucher disease. Qjm Int J Medicine. 1996;89(9):691–694.
  • Kinghorn KJ, Grönke S, Castillo-Quan JI, et al. A Drosophila model of neuronopathic gaucher disease demonstrates lysosomal-autophagic defects and altered mtor signalling and is functionally rescued by rapamycin. J Neurosci. 2016;36(46):11654–11670.
  • Khair SBA, Dhanushkodi NR, Ardah MT, et al. Silencing of glucocerebrosidase gene in drosophila enhances the aggregation of Parkinson’s disease associated α-synuclein mutant A53T and affects locomotor activity. Front Neurosci-switz. 2018;12:81.
  • Iijima K, Liu H-P, Chiang A-S, et al. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila : a potential model for Alzheimer’s disease. Proc Natl Acad Sci. 2004;101(17):6623–6628.
  • Finelli A, Kelkar A, Song H-J, et al. A model for studying Alzheimer’s Aβ42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci. 2004;26(3):365–375.
  • Crowther DC, Kinghorn KJ, Miranda E, et al. Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience. 2005;132(1):123–135.
  • Wittmann CW, Wszolek MF, Shulman JM, et al. Tauopathy in drosophila : neurodegeneration without neurofibrillary tangles. Science. 2001;293(5530):711–714.
  • Scheltens P, Strooper BD, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397:1577–1590.
  • Bouleau S, Tricoire H. Drosophila models of Alzheimer’s disease: advances, limits, and perspectives. J Alzheimer’s Dis. 2015;45(4):1015–1038.
  • Jeon Y, Lee JH, Choi B, et al. Genetic dissection of Alzheimer’s disease using drosophila models. Int J Mol Sci. 2020;21(3):884.
  • Reed LA, Schelper RL, Solodkin A, et al. Autosomal dominant dementia with widespread neurofibrillary tangles. Ann Neurol. 1997;42(4):564–572.
  • Swieten JCV, Stevens M, Rosso SM, et al. Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol. 1999;46(4):617–626.
  • Saito Y, Geyer A, Sasaki R, et al. Early-onset, rapidly progressive familial tauopathy with R406W mutation. Neurology. 2002;58(5):811–813.
  • Yasuyama K, Salvaterra PM. Localization of choline acetyltransferase‐expressing neurons in drosophila nervous system. Microsc Res Techniq. 1999;45(2):65–79.
  • Geddes JF, Hughes AJ, Lees AJ, et al. Pathological overlap in cases of parkinsonism associated with neurofibrillary tangles: a study of recent cases of postencephalitic parkinsonism and comparison with progressive supranuclear palsy and Guamanian parkinsonism-dementia complex. Brain. 1993;116(1):281–302.
  • van der LSJ, Wolters FJ, Ikram MK, et al. The effect of APOE and other common genetic variants on the onset of Alzheimer’s disease and dementia: a community-based cohort study. Lancet Neurol. 2018;17(5):434–444.
  • Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63:287–303.
  • Liu L, MacKenzie KR, Putluri N, et al. The glia-neuron lactate shuttle and elevated ros promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metab. 2017;26(5):719–737.e6.
  • Yeh E, Gustafson K, Boulianne GL. Green fluorescent protein as a vital marker and reporter of gene expression in drosophila. Proc Natl Acad Sci. 1995;92(15):7036–7040.
  • Rosen DR, Bowling AC, Patterson D, et al. A frequent ala 4 to val superoxide dismutase-1 mutation is associated with a rapidly progressive familial amyotrophic lateral sclerosis. Hum Mol Genet. 1994;3(6):981–987.
  • Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.
  • Watson MR, Lagow RD, Xu K, et al. A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1. J Biol Chem. 2008;283(36):24972–24981.
  • Hanson KA, Kim SH, Wassarman DA, et al. Ubiquilin modifies TDP-43 toxicity in a drosophila model of Amyotrophic Lateral Sclerosis (ALS). J Biol Chem. 2010;285(15):11068–11072.
  • Li Y, Ray P, Rao EJ, et al. A Drosophila model for TDP-43 proteinopathy. Proceedings of the National Academy of Sciences. 2010;107:3169–3174.
  • Ritson GP, Custer SK, Freibaum BD, et al. TDP-43 mediates degeneration in a novel drosophila model of disease caused by mutations in VCP/p97. J Neurosci. 2010;30(22):7729–7739.
  • Sreedharan J, Blair IP, Tripathi VB, et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science. 2008;319(5870):1668–1672.
  • J TJK, Bosco DA, LeClerc AL, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323:1205–1208.
  • Vance C, Rogelj B, Hortobagyi T, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323:1208–1211.
  • Roman G, Endo K, Zong L, et al. A system for spatial and temporal control of gene expression i Drosophila melanogaster. Proc Natl Acad Sci. 2001;98(22):12602–12607.
  • Osterwalder T, Yoon KS, White BH, et al. A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci. 2001;98(22):12596–12601.
  • Lanson NA, Maltare A, King H, et al. A drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet. 2011;20(13):2510–2523.
  • Mahr A, Aberle H. The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expr Patterns. 2006;6(3):299–309.
  • Chen Y, Yang M, Deng J, et al. Expression of human FUS protein in drosophila leads to progressive neurodegeneration. Protein Cell. 2011;2(6):477–486.
  • Wang J-W, Brent JR, Tomlinson A, et al. The ALS-associated proteins FUS and TDP-43 function together to affect drosophila locomotion and life span. J Clin Invest. 2011;121(10):4118–4126.
  • Tsuda H, Han SM, Yang Y, et al. The amyotrophic lateral sclerosis 8 protein vapb is cleaved, secreted, and acts as a ligand for eph receptors. Cell. 2008;133(6):963–977.
  • Ratnaparkhi A, Lawless GM, Schweizer FE, et al. A drosophila model of ALS: human ALS-associated mutation in VAP33A suggests a dominant negative mechanism. Plos One. 2008;3(6):e2334.
  • Chai A, Withers J, Koh YH, et al. the causative gene of a heterogeneous group of motor neuron diseases in humans, is functionally interchangeable with its Drosophila homologue DVAP-33A at the neuromuscular junction. Hum Mol Genet. 2008;17(2):266–280.
  • Thambisetty M, An Y, Tanaka T. Alzheimer’s disease risk genes and the age-at-onset phenotype. Neurobiol Aging. 2013;34(11):2696.e1–2696.e5.
  • Holstege H, van der LSJ, Hulsman M, et al. Characterization of pathogenic SORL1 genetic variants for association with Alzheimer’s disease: a clinical interpretation strategy. Eur J Hum Genet. 2017;25(8):973–981.
  • Cuyvers E, Roeck AD, den BTV, et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer’s disease patients: a targeted resequencing study. Lancet Neurol. 2015;14(8):814–822.
  • Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 Associated with the risk of Alzheimer’s disease. New Engl J Medicine. 2013;368:107–116.
  • Guerreiro R, Wojtas A, Bras J, et al. TREM variants in Alzheimer’s disease. New Engl J Medicine. 2013;368(2):117–127.
  • Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet. 2019;51(3):404–413.
  • (ADGC), ADGC,(EADI), TEADI,(CHARGE), C for H and AR in GEC, (GERAD/PERADES), G and ER in AG Polygenic and Environmental Risk for Alzheimer’s Disease Consortium, Kunkle BW, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–430.
  • Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091–1102.
  • Chia R, Sabir MS, Bandres-Ciga S, et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet. 2021;53(3):294–303.
  • van RW, van der SRAA, Bakker MK, et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet. 2021;53(12):1636–1648.
  • Hampel H, Nisticò R, Seyfried NT, et al. Omics sciences for systems biology in Alzheimer’s disease: state-of-the-art of the evidence. Ageing Res Rev. 2021;69:101346.
  • Schilder BM, Navarro E, Raj T. Multi-omic insights into Parkinson’s disease: from genetic associations to functional mechanisms. Neurobiol Dis. 2022;163:105580.
  • Caballero-Hernandez D, Toscano MG, Cejudo-Guillen M, et al. The ‘omics’ of amyotrophic lateral sclerosis. Trends Mol Med. 2016;22(1):53–67.
  • Tabrizi SJ, Flower MD, Ross CA, et al. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol. 2020;16(10):529–546.
  • Shulman JM, Jager PLD, Feany MB. Parkinson’s disease: genetics and pathogenesis. Pathology Mech Dis. 2011;6(1):193–222.
  • Shulman JM, Imboywa S, Giagtzoglou N, et al. Functional screening in Drosophila identifies Alzheimer’s disease susceptibility genes and implicates Tau-mediated mechanisms. Hum Mol Genet. 2014;23(4):870–877.
  • Shulman JM, Feany MB. Genetic modifiers of tauopathy in drosophila. Genetics. 2003;165(3):1233–1242.
  • Dourlen P, Fernandez-Gomez FJ, Dupont C, et al. Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of tau pathology. Mol Psychiatry. 2017;22(6):874–883.
  • Ordonez DG, Lee MK, Feany MB. α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron. 2018;97(1):108–124.e6.
  • Frost B, Hemberg M, Lewis J, et al. Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci. 2014;17(3):357–366.
  • Sun W, Samimi H, Gamez M, et al. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci. 2018;18:1–16.
  • Guo C, Jeong H.H, Hsieh Y-C, et al. Tau Activates Transposable Elements in Alzheimer’s Disease. Cell Rep. 2018;23(10):2874–2880.
  • Lohr KM, Frost B, Scherzer C, et al. Biotin rescues mitochondrial dysfunction and neurotoxicity in a tauopathy model. Proc Natl Acad Sci. 2020;117(52):33608–33618.
  • Loewen CA, Feany MB. The unfolded protein response protects from tau neurotoxicity in vivo. Plos One. 2010;5:e13084.
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018;47:gky1131.
  • Kwong LK, Neumann M, Sampathu DM, et al. TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol. 2007;114(1):63–70.
  • Elden AC, Kim H-J, Hart MP, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 2010;466(7310):1069–1075.
  • Mizielinska S, Grönke S, Niccoli T, et al. C9orf72 repeat expansions cause neurodegeneration in drosophila through arginine-rich proteins. Science. 2014;345(6201):1192–1194.
  • Goodman LD, Prudencio M, Kramer NJ, et al. Toxic expanded GGGGCC repeat transcription is mediated by the PAF1 complex in C9orf72-associated FTD. Nat Neurosci. 2019;22(6):863–874.
  • Goodman LD, Prudencio M, Srinivasan AR, et al. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72-associated ALS. Acta Neuropath Com. 2019;7(1):62.
  • Marygold SJ, Attrill H, Lasko P. The translation factors of drosophila melanogaster. Fly (Austin). 2016;11(1):65–74.
  • Berson A, Goodman LD, Sartoris AN, et al. Drosophila Ref1/ALYREF regulates transcription and toxicity associated with ALS/FTD disease etiologies. Acta Neuropath Com. 2019;7(1):65.
  • Sanhueza M, Chai A, Smith C, et al. Network analyses reveal novel aspects of ALS pathogenesis. Plos Genet. 2015;11(3):e1005107.
  • Rørth P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proceedings of the National Academy of Sciences. 1996; 931:12418–12422.
  • Kumar JP. Building an ommatidium one cell at a time. Dev Dynam. 2012;241(1):136–149.
  • Diez-Hermano S, Valero J, Rueda C, et al. An automated image analysis method to measure regularity in biological patterns: a case study in a drosophila neurodegenerative model. Mol Neurodegener. 2015;10(1):9.
  • Iyer J, Wang Q, Le T, et al. Quantitative assessment of eye phenotypes for functional genetic studies using drosophila melanogaster. G3 (Bethesda Md). 2016; 6:1427–1437.
  • Iyer J, Singh MD, Jensen M, et al. Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in drosophila melanogaster. Nat Commun. 2018;9(1):2548.
  • Tan FHP, Liu G, Lau S-YA, et al. Lactobacillus probiotics improved the gut microbiota profile of a drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef Microbes. 2020;11(1):79–89.
  • Song W, Smith MR, Syed A, et al. Morphometric analysis of huntington’s disease neurodegeneration in drosophila. Meth Mol Biology. 2013;1017:41–57.
  • Basler K, Yen D, Tomlinson A, et al. Reprogramming cell fate in the developing Drosophila retina: transformation of R7 cells by ectopic expression of rough. Gene Dev. 1990;4(5):728–739.
  • Pichaud F, Desplan C. A new visualization approach for identifying mutations that affect differentiation and organization of the drosophila ommatidia. Development. 2001;128(6):815–826.
  • Arikawa K, Hicks JL, Williams DS. Identification of actin filaments in the rhabdomeral microvilli of Drosophila photoreceptors. J Cell Biol. 1990;110(6):1993–1998.
  • Fernandez-Funez P, Nino-Rosales ML, de GB, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature. 2000;408(6808):101–106.
  • Iijima K, Gatt A, Iijima-Ando K. Tau ser262 phosphorylation is critical for Aβ42-induced tau toxicity in a transgenic drosophila model of Alzheimer’s disease. Hum Mol Genet. 2010;19(15):2947–2957.
  • Ishiguro T, Sato N, Ueyama M, et al. Regulatory role of RNA chaperone TDP-43 for RNA misfolding and repeat-associated translation in SCA31. Neuron. 2017;94(1):108–124.e7.
  • Heisenberg M, Böhl K. Isolation of anatomical brain mutants of drosophila by histological means. Zeitschrift Für Naturforschung C. 1979;34(1–2):143–147.
  • Sunderhaus ER, Kretzschmar D. mass histology to quantify neurodegeneration in drosophila. J Visualized Exp. 2016;45(2)e54809.
  • Behnke JA, Ye C, Setty A, et al. Repetitive mild head trauma induces activity mediated lifelong brain deficits in a novel drosophila model. Sci Rep-uk. 2021;11(1):9738.
  • Davis MY, Trinh K, Thomas RE, et al. Glucocerebrosidase deficiency in drosophila results in α-synuclein-independent protein aggregation and neurodegeneration. Plos Genet. 2016;12(3):e1005944.
  • Loewen CA, Ganetzky B. Mito-nuclear interactions affecting lifespan and neurodegeneration in a drosophila model of leigh syndrome. Genetics. 2018;208(4):1535–1552.
  • Behnke JA, Ye C, Moberg KH, et al. A protocol to detect neurodegeneration in drosophila melanogaster whole-brain mounts using advanced microscopy. Star Protoc. 2021;2(3):100689.
  • Shiraishi R, Tamura T, Sone M, et al. Systematic analysis of fly models with multiple drivers reveals different effects of ataxin-1 and huntingtin in neuron subtype-specific expression. Plos One. 2014;9(12):e116567.
  • Mao Z, Davis RL, Eight different types of dopaminergic neurons innervate the drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuit. 2009;3(1):5.
  • Wang D, Qian L, Xiong H, et al. Antioxidants protect PINK1 -dependent dopaminergic neurons in Drosophila. Proc Natl Acad Sci. 2006;103(36):13520–13525.
  • White KE, Humphrey DM, Hirth F. The dopaminergic system in the aging brain of drosophila. Front Neurosci-switz. 2010;4:205.
  • Song L, He Y, Ou J, et al. Auxilin underlies progressive locomotor deficits and dopaminergic neuron loss in a drosophila model of Parkinson’s disease. Cell Rep. 2017;18(5):1132–1143.
  • Fang Y, Soares L, Teng X, et al. A novel drosophila model of nerve injury reveals an essential role of nmnat in maintaining axonal integrity. Curr Biol. 2012;22(7):590–595.
  • Sreedharan J, Neukomm LJ, Brown RH, et al. Age-dependent TDP-43-mediated motor neuron degeneration requires GSK3, hat-trick, and xmas-2. Curr Biol. 2015;25(16):2130–2136.
  • Grueber WB, Jan LY, Jan YN. Tiling of the drosophila epidermis by multidendritic sensory neurons. Development. 2002;129(12):2867–2878.
  • Lee SB, Bagley JA, Lee HY, et al. Pathogenic polyglutamine proteins cause dendrite defects associated with specific actin cytoskeletal alterations in Drosophila. Proc Natl Acad Sci. 2011;108(40):16795–16800.
  • Neukomm LJ, Burdett TC, Gonzalez MA, et al. Rapid in vivo forward genetic approach for identifying axon death genes in drosophila. Proc Natl Acad Sci. 2014;111(27):9965–9970.
  • Iyer EPR, Iyer SC, Sullivan L, et al. Functional genomic analyses of two morphologically distinct classes of drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning. Plos One. 2013;8(8):e72434.
  • Kanaoka Y, Skibbe H, Hayashi Y, et al. DeTerm: software for automatic detection of neuronal dendritic branch terminals via an artificial neural network. Genes Cells. 2019;24(7):464–472.
  • Nguyen C, Thompson-Peer KL. Comparing automated morphology quantification software on dendrites of uninjured and injured drosophila neurons. Neuroinformatics. 2021;19(4):703–717.
  • Richard M, Doubková K, Nitta Y, et al. A quantitative model of sporadic axonal degeneration in the Drosophila visual system. 2021.
  • Nitta Y, Kawai H, Osaka J, et al. Medusa: a novel system for automated axon quantification to evaluate neuroaxonal degeneration. 2021.
  • MacDonald JM, Beach MG, Porpiglia E, et al. The drosophila cell corpse engulfment receptor draper mediates glial clearance of severed axons. Neuron. 2006;50(6):869–881.
  • Südhof TC. The presynaptic active zone. Neuron. 2012;75(1):11–25.
  • Bae JR, Kim SH. Synapses in neurodegenerative diseases. Bmb Rep. 2017;50(5):237–246.
  • Taoufik E, Kouroupi G, Zygogianni O, et al. Synaptic dysfunction in neurodegenerative and neurodevelopmental diseases: an overview of induced pluripotent stem-cell-based disease models. Open Biol. 2018;8(9):180138.
  • Priller C, Bauer T, Mitteregger G, et al. Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci. 2006;26(27):7212–7221.
  • Jang BG, In S, Choi B, et al. Beta-amyloid oligomers induce early loss of presynaptic proteins in primary neurons by caspase-dependent and proteasome-dependent mechanisms. Neuroreport. 2014;25(16):1281–1288.
  • Kopeikina KJ, Polydoro M, Tai H, et al. Synaptic alterations in the rTg4510 mouse model of tauopathy. J Comp Neurol. 2013;521(6):1334–1353.
  • Burré J, Sharma M, Tsetsenis T, et al. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663–1667.
  • Sun J, Wang L, Bao H, et al. Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc Natl Acad Sci U S A. 2019;116(23):11113–11115.
  • Nemani VM, Lu W, Berge V, et al. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron. 2010;65(1):66–79.
  • Nijhof B, Castells-Nobau A, Wolf L, et al. A new Fiji-based algorithm that systematically quantifies nine synaptic parameters provides insights into drosophila NMJ morphometry. Plos Comput Biol. 2016;12(3):e1004823.
  • Mosca TJ, Luo L. Synaptic organization of the drosophila antennal lobe and its regulation by the Teneurins. Elife. 2014;3:e03726.
  • Sugie A, Hakeda-Suzuki S, Suzuki E, et al. Molecular remodeling of the presynaptic active zone of drosophila photoreceptors via activity-dependent feedback. Neuron. 2015;86(3):711–725.
  • Scheffer LK, Xu CS, Januszewski M, et al. A connectome and analysis of the adult Drosophila central brain. Elife. 2020;9:e57443.
  • Lillvis JL, Otsuna H, Ding X, et al. Rapid reconstruction of neural circuits using tissue expansion and lattice light sheet microscopy. 2021.
  • Podratz JL, Staff NP, Boesche JB, et al. An automated climbing apparatus to measure chemotherapy-induced neurotoxicity in drosophila melanogaster. Fly (Austin). 2013;7(3):187–192.
  • Cao W, Song L, Cheng J, et al. An automated rapid iterative negative geotaxis assay for analyzing adult climbing behavior in a drosophila model of neurodegeneration. J Vis Exp 2017;
  • Spierer AN, Yoon D, Zhu C-T, et al. FreeClimber: automated quantification of climbing performance in Drosophila. J Exp Biol. 2020;224:jeb229377.
  • Tonoki A, Davis RL. Aging impairs intermediate-term behavioral memory by disrupting the dorsal paired medial neuron memory trace. Proc Natl Acad Sci. 2012;109(16):6319–6324.
  • Higham JP, Hidalgo S, Buhl E, et al. Restoration of olfactory memory in drosophila overexpressing human Alzheimer’s disease associated tau by manipulation of L-type Ca2+ channels. Front Cell Neurosci. 2019;13:409.
  • Tully T, Quinn WG. Classical conditioning and retention in normal and mutantDrosophila melanogaster. J Comp Phys. 1985;157(2):263–277.
  • Hardin PE. The circadian timekeeping system of drosophila. Curr Biol. 2005;15(17):R714–22.
  • Huber R, Hill SL, Holladay C, et al. Sleep homeostasis in drosophila melanogaster. Sleep. 2004;27(4):628–639.
  • Balija MBG, Griesinger C, Herzig A, et al. Pre-fibrillar α-synuclein mutants cause Parkinson’s disease-like non-motor symptoms in drosophila. Plos One. 2011;6(9):e24701.
  • Julienne H, Buhl E, Leslie DS, et al. Drosophila PINK1 and parkin loss-of-function mutants display a range of non-motor Parkinson’s disease phenotypes. Neurobiol Dis. 2017;104:15–23.
  • Buhl E, Higham JP, Hodge JJL. Alzheimer’s disease-associated tau alters Drosophila circadian activity, sleep and clock neuron electrophysiology. Neurobiol Dis. 2019;130:104507.
  • Takai A, Yamaguchi M, Yoshida H, et al. Investigating developmental and epileptic encephalopathy using drosophila melanogaster. Int J Mol Sci. 2020;21(17):6442.
  • Reynolds ER. Shortened Lifespan and Other Age-Related Defects in Bang Sensitive Mutants of Drosophila melanogaster G3 Genes Genomes. Genetics. 2018;8(12):3953–3960.
  • Kanca O, Andrews JC, Lee P-T, et al. De novo variants in WDR37 are associated with epilepsy, colobomas, dysmorphism, developmental delay, intellectual disability, and cerebellar hypoplasia. Am J Hum Genetics. 2019;105(2):413–424.
  • Belusic GE Electroretinograms (IntechOpen). 2011 9789535164456.
  • Vilinsky I, Johnson KG. Electroretinograms in drosophila: a robust and genetically accessible electrophysiological system for the undergraduate laboratory. J Neurosci. 2012;11:A149–57.
  • Deal SL, Yamamoto S, Unraveling novel mechanisms of neurodegeneration through a large-scale forward genetic screen in drosophila. Front Genetics. 2019;9:700.
  • Chouhan AK, Guo C, Hsieh Y-C, et al. Uncoupling neuronal death and dysfunction in DROSOPHILA models of neurodegenerative disease. Acta Neuropath Com. 2016;4(1):62.
  • Luo X, Rosenfeld JA, Yamamoto S, et al. Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. Plos Genet. 2017;13(7):e1006905.
  • Diez-Hermano S, Ganfornina MD, Vegas-Lozano E, et al. Machine learning representation of loss of eye regularity in a drosophila neurodegenerative model. Front Neurosci-switz. 2020;14:516.