3,889
Views
87
CrossRef citations to date
0
Altmetric
Review

STIM and ORAI proteins in the nervous system

Pages 245-252 | Received 17 Jun 2015, Accepted 07 Jul 2015, Published online: 01 Sep 2015

References

  • Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 1983; 306:67-9; PMID:6605482
  • Putney JW, Jr. Stimulus-permeability coupling: role of calcium in the receptor regulation of membrane permeability. Pharmacol Rev 1978; 30:209-45; PMID:224401
  • Putney JW, Jr. A model for receptor-regulated calcium entry. Cell Calcium 1986; 7:1-12; PMID:2420465
  • Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev 1997; 77:901-30; PMID:9354808
  • Zitt C, Halaszovich CR, Lückhoff A. The TRP family of cation channels: probing and advancing the concepts on receptor-activated calcium entry. Prog Neurobiol 2002; 66:243-64; PMID:11960680
  • Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992; 355:353-6; PMID:1309940
  • Gees M, Colsoul B, Nilius B. The role of transient receptor potential cation channels in Ca2+ signaling. Cold Spring Harb Perspect Biol 2010; 2:a003962; PMID:20861159; http://dx.doi.org/10.1101/cshperspect.a003962
  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE, Jr, Meyer T. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 2005; 15:1235-41; PMID:16005298
  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 2005; 169:435-45; PMID:15866891
  • Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005; 437:902-5; PMID:16208375
  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 2006; 441:179-85; PMID:16582901
  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG. Orai1 is an essential pore subunit of the CRAC channel. Nature 2006; 443:230-3; PMID:16921383
  • Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, Cahalan MD. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 2006; 443:226-9; PMID:16921385
  • Mercer JC, Dehaven WI, Smyth JT, Wedel B, Boyles RR, Bird GS, Putney JW, Jr. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 2006; 281:24979-90; PMID:16807233
  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet JP. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 2006; 312:1220-3; PMID:16645049
  • Parker NJ, Begley CG, Smith PJ, Fox RM. Molecular cloning of a novel human gene (D11S4896E) at chromosomal region 11p15.5. Genomics 1996; 37:253-6; PMID:8921403
  • Sabbioni S, Barbanti-Brodano G, Croce CM, Negrini M. GOK: a gene at 11p15 involved in rhabdomyosarcoma and rhabdoid tumor development. Cancer Res 1997; 57:4493-7; PMID:9377559
  • Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, Eid JP, Senior PV, Kazenwadel JS, Shandala T, Saint R, et al. Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 2001; 357:673-85; PMID:11463338
  • Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B. STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2009; 2:ra67; PMID:19843959; http://dx.doi.org/10.1126/scisignal.2000522
  • Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 2012; 13:549-65; PMID:22914293; http://dx.doi.org/10.1038/nrm3414
  • Stathopulos PB, Ikura M. Structural aspects of calcium-release activated calcium channel function. Channels (Austin) 2013; 7:344-53; PMID:24213636; http://dx.doi.org/10.4161/chan.26734
  • Spassova MA, Soboloff J, He LP, Xu W, Dziadek MA, Gill DL. STIM1 has a plasma membrane role in the activation of store-operated Ca(2+) channels. Proc Natl Acad Sci U S A 2006; 103:4040-5; PMID:16537481
  • Soboloff J, Spassova MA, Hewavitharana T, He LP, Xu W, Johnstone LS, Dziadek MA, Gill DL. STIM2 is an inhibitor of STIM1-mediated store-operated Ca2+ entry. Curr Biol 2006; 16:1465-70; PMID:16860747
  • Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 2008; 135:110-22; PMID:18854159; http://dx.doi.org/10.1016/j.cell.2008.08.006
  • Zheng L, Stathopulos PB, Li GY, Ikura M. Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensory region of STIM1 and STIM2. Biochem Biophys Res Commun 2008; 369:240-6; PMID:18166150; http://dx.doi.org/10.1016/j.bbrc.2007.12.129
  • Brandman O, Liou J, Park WS, Meyer T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 2007; 131:1327-39; PMID:18160041
  • Stathopulos PB, Zheng L, Ikura M. Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem 2009; 284:728-32; PMID:19019825; http://dx.doi.org/10.1074/jbc.C800178200
  • Wang X, Wang Y, Zhou Y, Hendron E, Mancarella S, Andrake MD, Rothberg BS, Soboloff J, Gill DL. Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat Commun 2014; 5:3183; PMID:24492416; http://dx.doi.org/10.1038/ncomms4183
  • Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 2006; 16:2073-9; PMID:16978865
  • Schindl R, Muik M, Fahrner M, Derler I, Fritsch R, Bergsmann J, Romanin C. Recent progress on STIM1 domains controlling Orai activation. Cell Calcium 2009; 46:227-32; PMID:19733393; http://dx.doi.org/10.1016/j.ceca.2009.08.003
  • Shim AH, Tirado-Lee L, Prakriya M. Structural and Functional Mechanisms of CRAC Channel Regulation. J Mol Biol 2015; 427:77-93; PMID:25284754; http://dx.doi.org/10.1016/j.jmb.2014.09.021
  • Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R. CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 2007; 17:794-800; PMID:17442569
  • DeHaven WI, Smyth JT, Boyles RR, Putney JW, Jr. Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem 2007; 282:17548-56; PMID:17452328
  • Parvez S, Beck A, Peinelt C, Soboloff J, Lis A, Monteilh-Zoller M, Gill DL, Fleig A, Penner R. STIM2 protein mediates distinct store-dependent and store-independent modes of CRAC channel activation. FASEB J 2008; 22:752-61; PMID:17905723
  • Yuan JP, Zeng W, Huang GN, Worley PF, Muallem S. STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels. Nat Cell Biol 2007; 9:636-45; PMID:17486119
  • Ong HL, Ambudkar IS. The dynamic complexity of the TRPC1 channelosome. Channels (Austin) 2011; 5:424-31; PMID:21747233; http://dx.doi.org/10.4161/chan.5.5.16471
  • Feske S. ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 2009; 231:189-209; PMID:19754898; http://dx.doi.org/10.1111/j.1600-065X.2009.00818.x
  • Bergmeier W, Weidinger C, Zee I, Feske S. Emerging roles of store-operated Ca2+ entry through STIM and ORAI proteins in immunity, hemostasis and cancer. Channels (Austin) 2013; 7:379-91; PMID:23511024; http://dx.doi.org/10.4161/chan.24302
  • Oh-Hora M, Yamashita M, Hogan PG, Sharma S, Lamperti E, Chung W, Prakriya M, Feske S, Rao A. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nat Immunol 2008; 9:432-43; PMID:18327260; http://dx.doi.org/10.1038/ni1574
  • Baba Y, Nishida K, Fujii Y, Hirano T, Hikida M, Kurosaki T. Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses. Nat Immunol 2008; 9:81-8; PMID:18059272
  • Vig M, DeHaven WI, Bird GS, Billingsley JM, Wang H, Rao PE, Hutchings AB, Jouvin MH, Putney JW, Kinet JP. Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 2008; 9:89-96; PMID:18059270
  • Braun A, Gessner JE, Varga-Szabo D, Syed SN, Konrad S, Stegner D, Vögtle T, Schmidt RE, Nieswandt B. STIM1 is essential for Fcgamma receptor activation and autoimmune inflammation. Blood 2009; 113:1097-104; PMID:18941110; http://dx.doi.org/10.1182/blood-2008-05-158477
  • Zhang H, Clemens RA, Liu F, Hu Y, Baba Y, Theodore P, Kurosaki T, Lowell CA. STIM1 calcium sensor is required for activation of the phagocyte oxidase during inflammation and host defense. Blood 2014; 123:2238-49; PMID:24493668; http://dx.doi.org/10.1182/blood-2012-08-450403
  • Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N, et al. STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 2008; 10:688-97; PMID:18488020; http://dx.doi.org/10.1038/ncb1731
  • Wei-Lapierre L, Carrell EM, Boncompagni S, Protasi F, Dirksen RT. Orai1-dependent calcium entry promotes skeletal muscle growth and limits fatigue. Nat Commun 2013; 4:2805; PMID:24241282; http://dx.doi.org/10.1038/ncomms3805
  • Zhang W, Halligan KE, Zhang X, Bisaillon JM, Gonzalez-Cobos JC, Motiani RK, Hu G, Vincent PA, Zhou J, Barroso M, et al. Orai1-mediated I (CRAC) is essential for neointima formation after vascular injury. Circ Res 2011; 109:534-42; PMID:21737791; http://dx.doi.org/10.1161/CIRCRESAHA.111.246777
  • Mancarella S, Potireddy S, Wang Y, Gao H, Gandhirajan RK, Autieri M, Scalia R, Cheng Z, Wang H, Madesh M, et al. Targeted STIM deletion impairs calcium homeostasis, NFAT activation, and growth of smooth muscle. FASEB J 2013; 27:893-906; PMID:23159931; http://dx.doi.org/10.1096/fj.12-215293
  • Varga-Szabo D, Braun A, Kleinschnitz C, Bender M, Pleines I, Pham M, Renné T, Stoll G, Nieswandt B. The calcium sensor STIM1 is an essential mediator of arterial thrombosis and ischemic brain infarction. J Exp Med 2008; 205:1583-91; PMID:18559454; http://dx.doi.org/10.1084/jem.20080302
  • Braun A, Varga-Szabo D, Kleinschnitz C, Pleines I, Bender M, Austinat M, Bösl M, Stoll G, Nieswandt B. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood 2009; 113:2056-63; PMID:18832659; http://dx.doi.org/10.1182/blood-2008-07-171611
  • Putney JW, Jr. Capacitative calcium entry in the nervous system. Cell Calcium 2003; 34:339-44; PMID:12909080
  • Verkhratsky A, Parpura V. Store-operated calcium entry in neuroglia. Neurosci Bull 2014; 30:125-33; PMID:23677809; http://dx.doi.org/10.1007/s12264-013-1343-x
  • Majewski L, Kuznicki J. SOCE in neurons: Signaling or just refilling? Biochim Biophys Acta 2015; 1853:1940-52; PMID:25646572; http://dx.doi.org/10.1016/j.bbamcr.2015.01.019
  • Moccia F, Zuccolo E, Soda T, Tanzi F, Guerra G, Mapelli L, Lodola F, D'Angelo E. Stim and Orai proteins in neuronal Ca(2+) signaling and excitability. Front Cell Neurosci 2015; 9:153; PMID:25964739; http://dx.doi.org/10.3389/fncel.2015.00153
  • Gross SA, Wissenbach U, Philipp SE, Freichel M, Cavalié A, Flockerzi V. Murine ORAI2 splice variants form functional Ca2+ release-activated Ca2+ (CRAC) channels. J Biol Chem 2007; 282:19375-84; PMID:17463004
  • Steinbeck JA, Henke N, Opatz J, Gruszczynska-Biegala J, Schneider L, Theiss S, Hamacher N, Steinfarz B, Golz S, Brüstle O, et al. Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Exp Neurol 2011; 232:185-94; PMID:21906591; http://dx.doi.org/10.1016/j.expneurol.2011.08.022
  • Skibinska-Kijek A, Wisniewska MB, Gruszczynska-Biegala J, Methner A, Kuznicki J. Immunolocalization of STIM1 in the mouse brain. Acta Neurobiol Exp (Wars) 2009; 69:413-28; PMID:20048759
  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 2007; 445:168-76; PMID:17151600
  • Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al. Proteomics. Tissue-based map of the human proteome. Science 2015; 347:1260419; PMID:25613900; http://dx.doi.org/10.1126/science.1260419
  • Gruszczynska-Biegala J, Pomorski P, Wisniewska MB, Kuznicki J. Differential roles for STIM1 and STIM2 in store-operated calcium entry in rat neurons. PLoS One 2011; 6:e19285; PMID:21541286; http://dx.doi.org/10.1371/journal.pone.0019285
  • Sun S, Zhang H, Liu J, Popugaeva E, Xu NJ, Feske S, White CL, 3rd, Bezprozvanny I. Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice. Neuron 2014; 82:79-93; PMID:24698269; http://dx.doi.org/10.1016/j.neuron.2014.02.019
  • Keil JM, Shen Z, Briggs SP, Patrick GN. Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS). PLoS One 2010; 5:e13465; PMID:20976103; http://dx.doi.org/10.1371/journal.pone.0013465
  • Garcia-Alvarez G, Lu B, Yap KA, Wong LC, Thevathasan JV, Lim L, Ji F, Tan KW, Mancuso JJ, Tang W, et al. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell 2015; 26:1141-59; PMID:25609091; http://dx.doi.org/10.1091/mbc.E14-07-1222
  • Hartmann J, Karl RM, Alexander RP, Adelsberger H, Brill MS, Rühlmann C, Ansel A, Sakimura K, Baba Y, Kurosaki T, et al. STIM1 controls neuronal Ca2+ signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior. Neuron 2014; 82:635-44; PMID:24811382; http://dx.doi.org/10.1016/j.neuron.2014.03.027
  • Lalonde J, Saia G, Gill G. Store-operated calcium entry promotes the degradation of the transcription factor Sp4 in resting neurons. Sci Signal 2014; 7:ra51; PMID:24894994; http://dx.doi.org/10.1126/scisignal.2005242
  • Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A. Biochemical and functional characterization of Orai proteins. J Biol Chem 2007; 282:16232-43; PMID:17293345
  • Takahashi Y, Murakami M, Watanabe H, Hasegawa H, Ohba T, Munehisa Y, Nobori K, Ono K, Iijima T, Ito H. Essential role of the N-terminus of murine Orai1 in store-operated Ca2+ entry. Biochem Biophys Res Commun 2007; 356:45-52; PMID:17343823
  • Hoth M, Niemeyer BA. The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr Top Membr 2013; 71:237-71; PMID:23890118; http://dx.doi.org/10.1016/B978-0-12-407870-3.00010-X
  • Bouron A. Activation of a capacitative Ca(2+) entry pathway by store depletion in cultured hippocampal neurones. FEBS Lett 2000; 470:269-72; PMID:10745080
  • Bouron A, Mbebi C, Loeffler JP, De Waard M. The beta-amyloid precursor protein controls a store-operated Ca2+ entry in cortical neurons. Eur J Neurosci 2004; 20:2071-8; PMID:15450086
  • Bouron A, Altafaj X, Boisseau S, De Waard M. A store-operated Ca2+ influx activated in response to the depletion of thapsigargin-sensitive Ca2+ stores is developmentally regulated in embryonic cortical neurons from mice. Brain Res Dev Brain Res 2005; 159:64-71; PMID:16099516
  • Emptage NJ, Reid CA, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 2001; 29:197-208; PMID:11182091
  • Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y. Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity. J Neurosci 2003; 23:7737-41; PMID:12944501
  • Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79:1431-568; PMID:10508238
  • Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010; 460:525-42; PMID:20229265; http://dx.doi.org/10.1007/s00424-010-0809-1
  • Sodero AO, Vriens J, Ghosh D, Stegner D, Brachet A, Pallotto M, Sassoè-Pognetto M, Brouwers JF, Helms JB, Nieswandt B, et al. Cholesterol loss during glutamate-mediated excitotoxicity. EMBO J 2012; 31:1764-73; PMID:22343944; http://dx.doi.org/10.1038/emboj.2012.31
  • Park CY, Shcheglovitov A, Dolmetsch R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 2010; 330:101-5; PMID:20929812; http://dx.doi.org/10.1126/science.1191027
  • Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL. The calcium store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science 2010; 330:105-9; PMID:20929813; http://dx.doi.org/10.1126/science.1191086
  • Hao B, Lu Y, Wang Q, Guo W, Cheung KH, Yue J. Role of STIM1 in survival and neural differentiation of mouse embryonic stem cells independent of Orai1-mediated Ca2+ entry. Stem Cell Res 2014; 12:452-66; PMID:24424349; http://dx.doi.org/10.1016/j.scr.2013.12.005
  • Hooper R, Rothberg BS, Soboloff J. Neuronal STIMulation at rest. Sci Signal 2014; 7:pe18; PMID:25056876; http://dx.doi.org/10.1126/scisignal.2005556
  • Somasundaram A, Shum AK, McBride HJ, Kessler JA, Feske S, Miller RJ, Prakriya M. Store-operated CRAC channels regulate gene expression and proliferation in neural progenitor cells. J Neurosci 2014; 34:9107-23; PMID:24990931; http://dx.doi.org/10.1523/JNEUROSCI.0263-14.2014
  • Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 2000; 288:1832-5; PMID:10846166
  • Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, Blum R, Dietrich A, Freichel M, Flockerzi V, et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 2008; 59:392-8; PMID:18701065; http://dx.doi.org/10.1016/j.neuron.2008.06.009
  • Verkhratsky A, Kettenmann H. Calcium signalling in glial cells. Trends Neurosci 1996; 19:346-52; PMID:8843604
  • Hartmann J, Verkhratsky A. Relations between intracellular Ca2+ stores and store-operated Ca2+ entry in primary cultured human glioblastoma cells. J Physiol 1998; 513:411-24; PMID:9806992
  • Golovina VA, Blaustein MP. Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca(2+) stores in astrocytes. Glia 2000; 31:15-28; PMID:10816603
  • Jung S, Pfeiffer F, Deitmer JW. Histamine-induced calcium entry in rat cerebellar astrocytes: evidence for capacitative and non-capacitative mechanisms. J Physiol 2000; 527:549-61; PMID:10990540
  • Moreno C, Sampieri A, Vivas O, Peña-Segura C, Vaca L. STIM1 and Orai1 mediate thrombin-induced Ca(2+) influx in rat cortical astrocytes. Cell Calcium 2012; 52:457-67; PMID:22944608; http://dx.doi.org/10.1016/j.ceca.2012.08.004
  • Motiani RK, Hyzinski-García MC, Zhang X, Henkel MM, Abdullaev IF, Kuo YH, Matrougui K, Mongin AA, Trebak M. STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflugers Arch 2013; 465:1249-60; PMID:23515871; http://dx.doi.org/10.1007/s00424-013-1254-8
  • Ronco V, Grolla AA, Glasnov TN, Canonico PL, Verkhratsky A, Genazzani AA, Lim D. Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium 2014; 55:219-29; PMID:24656753; http://dx.doi.org/10.1016/j.ceca.2014.02.016
  • Golovina VA. Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J Physiol 2005; 564:737-49; PMID:15731184
  • Linde CI, Baryshnikov SG, Mazzocco-Spezzia A, Golovina VA. Dysregulation of Ca2+ signaling in astrocytes from mice lacking amyloid precursor protein. Am J Physiol Cell Physiol 2011; 300:C1502-12; PMID:21368296; http://dx.doi.org/10.1152/ajpcell.00379.2010
  • Malarkey EB, Ni Y, Parpura V. Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 2008; 56:821-35; PMID:18338793; http://dx.doi.org/10.1002/glia.20656
  • Song X, Zhao Y, Narcisse L, Duffy H, Kress Y, Lee S, Brosnan CF. Canonical transient receptor potential channel 4 (TRPC4) co-localizes with the scaffolding protein ZO-1 in human fetal astrocytes in culture. Glia 2005; 49:418-29; PMID:15540229
  • Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 2003; 278:39014-9; PMID:12857742
  • Shirakawa H, Sakimoto S, Nakao K, Sugishita A, Konno M, Iida S, Kusano A, Hashimoto E, Nakagawa T, Kaneko S. Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes. J Neurosci 2010; 30:13116-29; PMID:20881130; http://dx.doi.org/10.1523/JNEUROSCI.1890-10.2010
  • Ma HT, Patterson RL, van Rossum DB, Birnbaumer L, Mikoshiba K, Gill DL. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science 2000; 287:1647-51; PMID:10698739
  • Grimaldi M, Maratos M, Verma A. Transient receptor potential channel activation causes a novel form of [Ca2+]i oscillations and is not involved in capacitative Ca2+ entry in glial cells. J Neurosci 2003; 23:4737-45; PMID:12805313
  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011; 91:461-553; PMID:21527731; http://dx.doi.org/10.1152/physrev.00011.2010
  • Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 2001; 21:1975-82; PMID:11245682
  • Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006; 9:1512-9; PMID:17115040
  • Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 2007; 446:1091-5; PMID:17410128
  • Möller T, Nolte C, Burger R, Verkhratsky A, Kettenmann H. Mechanisms of C5a and C3a complement fragment-induced [Ca2+]i signaling in mouse microglia. J Neurosci 1997; 17:615-24; PMID:8987784
  • Toescu EC, Möller T, Kettenmann H, Verkhratsky A. Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience 1998; 86:925-35; PMID:9692728
  • Beck A, Penner R, Fleig A. Lipopolysaccharide-induced down-regulation of Ca2+ release-activated Ca2+ currents (I CRAC) but not Ca2+-activated TRPM4-like currents (I CAN) in cultured mouse microglial cells. J Physiol 2008; 586:427-39; PMID:17991695
  • Ohana L, Newell EW, Stanley EF, Schlichter LC. The Ca2+ release-activated Ca2+ current (I(CRAC)) mediates store-operated Ca2+ entry in rat microglia. Channels (Austin) 2009; 3:129-39; PMID:19411837
  • Peinelt C, Lis A, Beck A, Fleig A, Penner R. 2-Aminoethoxydiphenyl borate directly facilitates and indirectly inhibits STIM1-dependent gating of CRAC channels. J Physiol 2008; 586:3061-73; PMID:18403424; http://dx.doi.org/10.1113/jphysiol.2008.151365
  • Siddiqui TA, Lively S, Vincent C, Schlichter LC. Regulation of podosome formation, microglial migration and invasion by Ca(2+)-signaling molecules expressed in podosomes. J Neuroinflammation 2012; 9:250; PMID:23158496; http://dx.doi.org/10.1186/1742-2094-9-250
  • Heo DK, Lim HM, Nam JH, Lee MG, Kim JY. Regulation of phagocytosis and cytokine secretion by store-operated calcium entry in primary isolated murine microglia. Cell Signal 2015; 27:177-86; PMID:25451082; http://dx.doi.org/10.1016/j.cellsig.2014.11.003
  • Kim B, Jeong HK, Kim JH, Lee SY, Jou I, Joe EH. Uridine 5′-diphosphate induces chemokine expression in microglia and astrocytes through activation of the P2Y6 receptor. J Immunol 2011; 186:3701-9; PMID:21317391; http://dx.doi.org/10.4049/jimmunol.1000212
  • Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R. STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia 2015; 63:652-63; PMID:25471906; http://dx.doi.org/10.1002/glia.22775
  • Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000; 20:4106-14; PMID:10805752
  • Kar P, Bakowski D, Di Capite J, Nelson C, Parekh AB. Different agonists recruit different stromal interaction molecule proteins to support cytoplasmic Ca2+ oscillations and gene expression. Proc Natl Acad Sci U S A 2012; 109:6969-74; PMID:22509043; http://dx.doi.org/10.1073/pnas.1201204109
  • Thiel M, Lis A, Penner R. STIM2 drives Ca2+ oscillations through store-operated Ca2+ entry caused by mild store depletion. J Physiol 2013; 591:1433-45; PMID:23359669; http://dx.doi.org/10.1113/jphysiol.2012.245399
  • Ong HL, de Souza LB, Zheng C, Cheng KT, Liu X, Goldsmith CM, Feske S, Ambudkar IS. STIM2 enhances receptor-stimulated Ca2+ signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions. Sci Signal 2015; 8:ra3; PMID:25587190; http://dx.doi.org/10.1126/scisignal.2005748
  • Kraft R, Grimm C, Frenzel H, Harteneck C. Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol 2006; 148:264-73; PMID:16604090
  • Gitik M, Reichert F, Rotshenker S. Cytoskeleton plays a dual role of activation and inhibition in myelin and zymosan phagocytosis by microglia. FASEB J 2010; 24:2211-21; PMID:20179145; http://dx.doi.org/10.1096/fj.09-146118
  • Uesugi A, Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Robaye B, Boeynaems JM, Inoue K. Involvement of protein kinase D in uridine diphosphate-induced microglial macropinocytosis and phagocytosis. Glia 2012; 60:1094-105; PMID:22488958; http://dx.doi.org/10.1002/glia.22337
  • Irino Y, Nakamura Y, Inoue K, Kohsaka S, Ohsawa K. Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia. J Neurosci Res 2008; 86:1511-9; PMID:18183622; http://dx.doi.org/10.1002/jnr.21610
  • Bogeski I, Kummerow C, Al-Ansary D, Schwarz EC, Koehler R, Kozai D, Takahashi N, Peinelt C, Griesemer D, Bozem M, et al. Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci Signal 2010; 3:ra24; PMID:20354224; http://dx.doi.org/10.1126/scisignal.2000672
  • Mignen O, Thompson JL, Shuttleworth TJ. Both Orai1 and Orai3 are essential components of the arachidonate-regulated Ca2+-selective (ARC) channels. J Physiol 2008; 586:185-95; PMID:17991693
  • Thompson J, Mignen O, Shuttleworth TJ. The N-terminal domain of Orai3 determines selectivity for activation of the store-independent ARC channel by arachidonic acid. Channels (Austin) 2010; 4:398-410; PMID:20818184; http://dx.doi.org/10.4161/chan.4.5.13226
  • Sun GY, Horrocks LA, Farooqui AA. The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 2007; 103:1-16; PMID:17561938
  • Kimelberg HK, Nedergaard M. Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 2010; 7:338-53; PMID:20880499; http://dx.doi.org/10.1016/j.nurt.2010.07.006
  • Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 2009; 323:1211-5; PMID:19251629; http://dx.doi.org/10.1126/science.1169096
  • Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron 2013; 77:10-8; PMID:23312512; http://dx.doi.org/10.1016/j.neuron.2012.12.023
  • Aguzzi A, Barres BA, Bennett ML. Microglia: scapegoat, saboteur, or something else? Science 2013; 339:156-61; PMID:23307732; http://dx.doi.org/10.1126/science.1227901
  • Mosher KI, Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer's disease. Biochem Pharmacol 2014; 88:594-604; PMID:24445162; http://dx.doi.org/10.1016/j.bcp.2014.01.008
  • Streit WJ, Xue QS, Tischer J, Bechmann I. Microglial pathology. Acta Neuropathol Commun 2014; 2:142; PMID:25257319; http://dx.doi.org/10.1186/s40478-014-0142-6
  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74:691-705; PMID:22632727; http://dx.doi.org/10.1016/j.neuron.2012.03.026
  • Brawek B, Schwendele B, Riester K, Kohsaka S, Lerdkrai C, Liang Y, Garaschuk O. Impairment of in vivo calcium signaling in amyloid plaque-associated microglia. Acta Neuropathol 2014; 127:495-505; PMID:24407428; http://dx.doi.org/10.1007/s00401-013-1242-2