2,085
Views
46
CrossRef citations to date
0
Altmetric
Review

Pharmacological gating modulation of small- and intermediate-conductance Ca2+-activated K+ channels (KCa2.x and KCa3.1)

&
Pages 336-343 | Received 29 Jun 2015, Accepted 07 Jul 2015, Published online: 11 Nov 2015

References

  • Balut CM, Hamilton KL, Devor DC. Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca2+-activated K+ channels: a novel target for medicinal chemistry efforts? Chem Med Chem 2012; 7:1741-55; PMID:22887933; http://dx.doi.org/10.1002/cmdc.201200226
  • Changeux JP. The concept of allosteric modulation: an overview. Drug Discov Today Technol 2013; 10:e223-8; PMID:24050272; http://dx.doi.org/10.1016/j.ddtec.2012.07.007
  • Sieghart W. Pharmacology of benzodiazepine receptors: an update. J Psychiatry Neurosci 1994; 19:24-9; PMID:8148363
  • Wang RX, Jiang WP. Changes of action potential and L-type calcium channel current of Sprague-Dawley rat ventricular myocytes by different amlodipine isomers. Can J Physiol Pharmacol 2008; 86:620-5; PMID:18758511; http://dx.doi.org/10.1139/Y08-065
  • Greenberg DA, Cooper EC, Carpenter CL. Calcium channel ‘agonist’ BAY K 8644 inhibits calcium antagonist binding to brain and PC12 cell membranes. Brain Res 1984; 305:365-8; PMID:6204725; http://dx.doi.org/10.1016/0006-8993(84)90444-X
  • Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 1983; 303:535-7; PMID:6190088; http://dx.doi.org/10.1038/303535a0
  • Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, Wulff H. International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 2005; 57:463-72; PMID:16382103; http://dx.doi.org/10.1124/pr.57.4.9
  • Adelman JP, Maylie J, Sah P. Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 2012; 74:245-69; PMID:21942705; http://dx.doi.org/10.1146/annurev-physiol-020911-153336
  • Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 2010; 3:385-96; PMID:22111618; http://dx.doi.org/10.1586/ecp.10.11
  • King B, Rizwan AP, Asmara H, Heath NC, Engbers JD, Dykstra S, et al. IKCa channels are a critical determinant of the slow AHP in CA1 pyramidal neurons. Cell Rep 2015; 11:175-82; PMID:25865881; http://dx.doi.org/10.1016/j.celrep.2015.03.026
  • Adelman JP. SK channels and calmodulin. Channels (Austin) 2015:1-6; PMID:25942650; http://dx.doi.org/10.1080/19336950.2015.1029688
  • Schumacher MA, Rivard AF, Bachinger HP, Adelman JP. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 2001; 410:1120-4; PMID:11323678; http://dx.doi.org/10.1038/35074145
  • Joiner WJ, Khanna R, Schlichter LC, Kaczmarek LK. Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+-activated K+ channels. J Biol Chem 2001; 276:37980-5; PMID:11495911
  • Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 1998; 395:503-7; PMID:9774106; http://dx.doi.org/10.1038/26758
  • Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kalman K, Zhou J, Beckingham K, Chandy KG, Cahalan MD, Aiyar J. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J Biol Chem 1999; 274:5746-54; PMID:10026195; http://dx.doi.org/10.1074/jbc.274.9.5746
  • Hougaard C, Eriksen BL, Jorgensen S, Johansen TH, Dyhring T, Madsen LS, Strøbaek D, Christophersen P. Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels. Br J Pharmacol 2007; 151:655-65; PMID:17486140; http://dx.doi.org/10.1038/sj.bjp.0707281
  • Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 1997; 94:11651-6; PMID:9326665; http://dx.doi.org/10.1073/pnas.94.21.11651
  • Srivastava S, Li Z, Ko K, Choudhury P, Albaqumi M, Johnson AK, Yan Y, Backer JM, Unutmaz D, Coetzee WA, et al. Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol Cell 2006; 24:665-75; PMID:17157250; http://dx.doi.org/10.1016/j.molcel.2006.11.012
  • Stocker M, Krause M, Pedarzani P. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 1999; 96:4662-7; PMID:10200319; http://dx.doi.org/10.1073/pnas.96.8.4662
  • Wolfart J, Roeper J. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci 2002; 22:3404-13; PMID:11978817
  • Womack MD, Khodakhah K. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons. J Neurosci 2003; 23:2600-7; PMID:12684445
  • Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat Neurosci 2005; 8:642-9; PMID:15852011; http://dx.doi.org/10.1038/nn1449
  • McKay BM, Oh MM, Galvez R, Burgdorf J, Kroes RA, Weiss C, Adelman JP, Moskal JR, Disterhoft JF. Increasing SK2 channel activity impairs associative learning. J Neurophysiol 2012; 108:863-70; PMID:22552186; http://dx.doi.org/10.1152/jn.00025.2012
  • Vick KAT, Guidi M, Stackman RW, Jr. In vivo pharmacological manipulation of small conductance Ca2+-activated K+ channels influences motor behavior, object memory and fear conditioning. Neuropharmacology 2010; 58:650-9; PMID:AMBIGUOUS; http://dx.doi.org/10.1016/j.neuropharm.2009.11.008
  • van der Staay FJ, Fanelli RJ, Blokland A, Schmidt BH. Behavioral effects of apamin, a selective inhibitor of the SK(Ca)-channel, in mice and rats. Neurosci Biobehav Rev 1999; 23:1087-110; PMID:10643819; http://dx.doi.org/10.1016/S0149-7634(99)00043-3
  • Cahalan MD, Chandy KG. The functional network of ion channels in T lymphocytes. Immunol Rev 2009; 231:59-87; PMID:19754890; http://dx.doi.org/10.1111/j.1600-065X.2009.00816.x
  • Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol 2015; 33:291-353; PMID:25861976; http://dx.doi.org/10.1146/annurev-immunol-032414-112212
  • Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, Grgic I, Vilianovich L, Giebing G, Maier T, Gross V, et al. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res 2006; 99:537-44; PMID:16873714; http://dx.doi.org/10.1161/01.RES.0000238377.08219.0c
  • Brahler S, Kaistha A, Schmidt VJ, Wolfle SE, Busch C, Kaistha BP, Kacik M, Hasenau AL, Grgic I, Si H, et al. Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 2009; 119:2323-32; PMID:19380617; http://dx.doi.org/10.1161/CIRCULATIONAHA.108.846634
  • Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 2000; 275:37137-49; PMID:10961988; http://dx.doi.org/10.1074/jbc.M003941200
  • Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, Lafaille M, Skolnik EY. Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc Natl Acad Sci USA 2010; 107:1541-6; PMID:20080610; http://dx.doi.org/10.1073/pnas.0910133107
  • Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca2+-dependent K+ channel. Am J Physiol 1996; 271:L775-84; PMID:8944721
  • Jensen BS, Strobaek D, Christophersen P, Jorgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK. Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 1998; 275:C848-56; PMID:9730970
  • Pedarzani P, McCutcheon JE, Rogge G, Jensen BS, Christophersen P, Hougaard C, Strøbaek D, Stocker M. Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current I(AHP) and modulates the firing properties of hippocampal pyramidal neurons. J Biol Chem 2005; 280:41404-11; PMID:16239218; http://dx.doi.org/10.1074/jbc.M509610200
  • Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Cur Med Chem 2007; 14:1437-57; PMID:17584055; http://dx.doi.org/10.2174/092986707780831186
  • Cao Y, Dreixler JC, Roizen JD, Roberts MT, Houamed KM. Modulation of recombinant small-conductance Ca2+-activated K+ channels by the muscle relaxant chlorzoxazone and structurally related compounds. J Pharmacol Exp Ther 2001; 296:683-9; PMID:11181893
  • Cao YJ, Dreixler JC, Couey JJ, Houamed KM. Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur J Pharmacol 2002; 449:47-54; PMID:12163105; http://dx.doi.org/10.1016/S0014-2999(02)01987-8
  • Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer J, Köhler R, Wulff H. Naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol 2009; 75:281-95; PMID:18955585; http://dx.doi.org/10.1124/mol.108.051425
  • Strøbaek D, Teuber L, Jørgensen TD, Ahring PK, Kjaer K, Hansen RS, Olesen SP, Christophersen P, Skaaning-Jensen B. Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta 2004; 1665:1-5; PMID:15471565; http://dx.doi.org/10.1016/j.bbamem.2004.07.006
  • Coleman N, Brown BM, Oliván-Viguera A, Singh V, Olmstead MM, Valero MS, Köhler R, Wulff H. New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. Mol Pharmacol 2014; 86:342-57; PMID:24958817; http://dx.doi.org/10.1124/mol.114.093286
  • Kasumu AW, Hougaard C, Rode F, Jacobsen TA, Sabatier JM, Eriksen BL, Strøbæk D, Liang X, Egorova P, Vorontsova D, et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol 2012; 19:1340-53; PMID:23102227; http://dx.doi.org/10.1016/j.chembiol.2012.07.013
  • Hougaard C1, Hammami S, Eriksen BL, Sørensen US, Jensen ML, Strøbæk D, Christophersen P. Evidence for a common pharmacological interaction site on K(Ca)2 channels providing both selective activation and selective inhibition of the human K(Ca)2.1 subtype. Mol Pharmacol 2012; 81:210-9; PMID:22046005; http://dx.doi.org/10.1124/mol.111.074252
  • Hougaard C1, Jensen ML, Dale TJ, Miller DD, Davies DJ, Eriksen BL, Strøbaek D, Trezise DJ, Christophersen P. Selective activation of the SK1 subtype of human small-conductance Ca2+-activated K+ channels by 4-(2-methoxyphenylcarbamoyloxymethyl)-piperidine-1-carboxylic acid tert-butyl ester (GW542573X) is dependent on serine 293 in the S5 segment. Mol Pharmacol 2009; 76:569-78; PMID:19515965; http://dx.doi.org/10.1124/mol.109.056663
  • Pedarzani P, Mosbacher J, Rivard A, Cingolani LA, Oliver D, Stocker M, Adelman JP, Fakler B. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J Biol Chem 2001; 276:9762-9; PMID:11134030; http://dx.doi.org/10.1074/jbc.M010001200
  • Ji H, Hougaard C, Herrik KF, Strobaek D, Christophersen P, Shepard PD. Tuning the excitability of midbrain dopamine neurons by modulating the Ca2+ sensitivity of SK channels. Eur J Neurosci 2009; 29:1883-95; PMID:19473240; http://dx.doi.org/10.1111/j.1460-9568.2009.06735.x
  • Li W, Halling DB, Hall AW, Aldrich RW. EF hands at the N-lobe of calmodulin are required for both SK channel gating and stable SK-calmodulin interaction. J Gen Physiol 2009; 134:281-93; PMID:19752189; http://dx.doi.org/10.1085/jgp.200910295
  • Zhang M, Pascal JM, Schumann M, Armen RS, Zhang JF. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels. Nat Commun 2012; 3:1021; PMID:22929778; http://dx.doi.org/10.1038/ncomms2017
  • Zhang M, Pascal JM, Zhang JF. Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca2+-sensing and SK channel activation. Proc Natl Acad Sci USA 2013; 110:4828-33; PMID:23487779; http://dx.doi.org/10.1073/pnas.1220253110
  • Zhang M, Meng XY, Cui M, Pascal JM, Logothetis DE, Zhang JF. Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex. Nat Chem Biol 2014; 10:753-9; PMID:25108821; http://dx.doi.org/10.1038/nchembio.1592
  • Hopf FW, Simms JA, Chang SJ, Seif T, Bartlett SE, Bonci A. Chlorzoxazone, an SK-type potassium channel activator used in humans, reduces excessive alcohol intake in rats. Biol Psychiatry 2011; 69:618-24; PMID:21195386; http://dx.doi.org/10.1016/j.biopsych.2010.11.011
  • Padula AE, Griffin WC 3rd, Lopez MF, Nimitvilai S, Cannady R, McGuier NS, Chesler EJ, Miles MF, Williams RW, Randall PK, et al. KCNN genes that encode small-conductance Ca2+-activated K+ channels influence alcohol and drug addiction. Neuropsychopharmacology 2015; 40:1928-39; PMID:25662840; http://dx.doi.org/10.1038/npp.2015.42
  • Oliveira MS, Skinner F, Arshadmansab MF, Garcia I, Mello CF, Knaus HG, Ermolinsky BS, Otalora LF, Garrido-Sanabria ER. Altered expression and function of small-conductance (SK) Ca2+-activated K+ channels in pilocarpine-treated epileptic rats. Brain Res 2010; 1348:187-99; PMID:20553876; http://dx.doi.org/10.1016/j.brainres.2010.05.095
  • Schulz R, Kirschstein T, Brehme H, Porath K, Mikkat U, Kohling R. Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Neurobiol Dis 2012; 45:337-47; PMID:21889592; http://dx.doi.org/10.1016/j.nbd.2011.08.019
  • Alvina K, Khodakhah K. KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci 2010; 30:7249-57; PMID:20505091; http://dx.doi.org/10.1523/JNEUROSCI.6341-09.2010
  • Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 2006; 9:389-97; PMID:16474392; http://dx.doi.org/10.1038/nn1648
  • Shakkottai VG, do Carmo Costa M, Dell'Orco JM, Sankaranarayanan A, Wulff H, Paulson HL. Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 2011; 31:13002-14; PMID:21900579; http://dx.doi.org/10.1523/JNEUROSCI.2789-11.2011
  • Cerminara NL, Rawson JA. Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. J Neurosci 2004; 24:4510-7; PMID:15140921; http://dx.doi.org/10.1523/JNEUROSCI.4530-03.2004
  • McKay BE, Engbers JD, Mehaffey WH, Gordon GR, Molineux ML, Bains JS, Turner RW. Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of Purkinje cell output. J Neurophysiol 2007; 97:2590-604; PMID:17267759; http://dx.doi.org/10.1152/jn.00627.2006
  • Ristori G, Romano S, Visconti A, Cannoni S, Spadaro M, Frontali M, Pontieri FE, Vanacore N, Salvetti M. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 2010; 74:839-45; PMID:20211908; http://dx.doi.org/10.1212/WNL.0b013e3181d31e23
  • Feil K, Claassen J, Bardins S, Teufel J, Krafczyk S, Schneider E, Schniepp R, Jahn K, Kalla R, Strupp M. Effect of chlorzoxazone in patients with downbeat nystagmus: a pilot trial. Neurology 2013; 81:1152-8; PMID:23975871; http://dx.doi.org/10.1212/WNL.0b013e3182a55f6d
  • Hipólito L, Fakira AK, Cabañero D, Blandón R, Carlton SM, Morón JA, Melyan Z. In vivo activation of the SK channel in the spinal cord reduces the NMDA receptor antagonist dose needed to produce antinociception in an inflammatory pain model. Pain. 2015; 156:849-58; PMID:25734988; http://dx.doi.org/10.1097/j.pain.0000000000000124
  • Edwards G, Feletou M, Weston AH. Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch 2010; 459:863-79; PMID:20383718; http://dx.doi.org/10.1007/s00424-010-0817-1
  • Wulff H, Köhler R. Endothelial small-conductance and intermediate-conductance KCa channels: an update on their pharmacology and usefulness as cardiovascular targets. J Cardiovas Pharmacol 2013; 61:102-12; PMID:23107876; http://dx.doi.org/10.1097/FJC.0b013e318279ba20
  • Damkjaer M, Nielsen G, Bodendiek S, Staehr M, Gramsbergen JB, de Wit C, Jensen BL, Simonsen U, Bie P, Wulff H, et al. Pharmacological activation of KCa3.1/KCa2.3 channels produces endothelial hyperpolarization and lowers blood pressure in conscious dogs. Br J Pharmacol 2012; 165:223-34; PMID:21699504; http://dx.doi.org/10.1111/j.1476-5381.2011.01546.x
  • Radtke J, Schmidt K, Wulff H, Kohler R, de Wit C. Activation of KCa3.1 by SKA-31 induces arteriolar dilatation and lowers blood pressure in normo- and hypertensive connexin40-deficient mice. Br J Pharmacol 2013; 170:293-303; PMID:23734697; http://dx.doi.org/10.1111/bph.12267
  • Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, et al. The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 2008; 118:3025-37; PMID:18688283; http://dx.doi.org/10.1172/JCI30836
  • Bi D, Toyama K, Lemaître V, Takai J, Fan F, Jenkins DP, Wulff H, Gutterman DD, Park F, Miura H. The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling. J Biol Chem 2013; 288:15843-53; PMID:23609438; http://dx.doi.org/10.1074/jbc.M112.427187
  • Lamy C, Goodchild SJ, Weatherall KL, Jane DE, Liégeois JF, Seutin V, Marrion NV. Allosteric block of KCa2 channels by apamin. J Biol Chem 2010; 285:27067-77; PMID:20562108; http://dx.doi.org/10.1074/jbc.M110.110072
  • Weatherall KL, Seutin V, Liegeois JF, Marrion NV. Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small-conductance calcium-activated potassium (SK) channels. Proc Natl Acad Sci USA 2011; 108:18494-9; PMID:22025703; http://dx.doi.org/10.1073/pnas.1110724108
  • Strøbaek D1, Hougaard C, Johansen TH, Sørensen US, Nielsen EØ, Nielsen KS, Taylor RD, Pedarzani P, Christophersen P. Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol Pharmacol 2006; 70:1771-82; PMID:16926279; http://dx.doi.org/10.1124/mol.106.027110
  • Sørensen US1, Strøbaek D, Christophersen P, Hougaard C, Jensen ML, Nielsen EØ, Peters D, Teuber L. Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators of small conductance Ca2+-activated K+ channels. J Med Chem 2008; 51:7625-34; PMID:18998663; http://dx.doi.org/10.1021/jm800809f
  • Campos Rosa J, Galanakis D, Piergentili A, Bhandari K, Ganellin CR, Dunn PM, Jenkinson DH. Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: potent, non-peptidic blockers of the apamin-sensitive Ca2+-activated K+ channel. J Med Chem 2000; 43:420-31; PMID:10669569; http://dx.doi.org/10.1021/jm9902537
  • Fletcher DI, Ganellin CR, Piergentili A, Dunn PM, Jenkinson DH. Synthesis and pharmacological testing of polyaminoquinolines as blockers of the apamin-sensitive Ca2+-activated K+ channel (SKCa). Bioorg Med Chem 2007; 15:5457-79; PMID:17560109; http://dx.doi.org/10.1016/j.bmc.2007.05.054
  • Oliván-Viguera A1, Valero MS, Murillo MD, Wulff H, García-Otín AL, Arbonés-Mainar JM, Köhler R. Novel phenolic inhibitors of small/intermediate-conductance Ca2+-activated K+ channels, KCa3.1 and KCa2.3. PLoS One 2013; 8:e58614; PMID:23516517; http://dx.doi.org/10.1371/journal.pone.0058614
  • Oliván-Viguera A, Valero MS, Coleman N, Brown BM, Laría C, Murillo MD, Gálvez JA, Díaz-de-Villegas MD, Wulff H, Badorrey R, et al. A novel pan-negative-gating modulator of KCa2/3 channels, fluoro-di-benzoate, RA-2, inhibits endothelium-derived hyperpolarization-type relaxation in coronary artery and produces bradycardia in vivo. Mol Pharmacol 2015; 87:338-48; PMID:25468883; http://dx.doi.org/10.1124/mol.114.095745
  • Jenkins DP1, Strøbæk D, Hougaard C, Jensen ML, Hummel R, Sørensen US, Christophersen P, Wulff H. Negative gating modulation by (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphthylamine (NS8593) depends on residues in the inner pore vestibule: pharmacological evidence of deep-pore gating of K(Ca)2 channels. Mol Pharmacol 2011; 79:899-909; PMID:21363929; http://dx.doi.org/10.1124/mol.110.069807
  • Bruening-Wright A, Lee WS, Adelman JP, Maylie J. Evidence for a deep pore activation gate in small conductance Ca2+-activated K+ channels. J Gen Physiol 2007; 130:601-10; PMID:17998394; http://dx.doi.org/10.1085/jgp.200709828
  • Wulff H, Gutman GA, Cahalan MD, Chandy KG. Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1. J Biol Chem 2001; 276:32040-5; PMID:11425865; http://dx.doi.org/10.1074/jbc.M105231200
  • Herrik KF, Christophersen P, Shepard PD. Pharmacological modulation of the gating properties of small conductance Ca2+-activated K+ channels alters the firing pattern of dopamine neurons in vivo. J Neurophysiol 2010; 104:1726-35; PMID:20660424; http://dx.doi.org/10.1152/jn.01126.2009
  • Skibsbye L, Wang X, Axelsen LN, Bomholtz SH, Nielsen MS, Grunnet M, Bentzen BH, Jespersen T. Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium. J Cardiovasc Pharmacol 2015; PMID:25856531
  • Haugaard MM, Hesselkilde EZ, Pehrson S, Carstensen H, Flethøj M, Præstegaard KF, Sørensen US, Diness JG, Grunnet M, Buhl R, et al. Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses. Heart Rhythm 2015; 12:825-35; PMID:25542425; http://dx.doi.org/10.1016/j.hrthm.2014.12.028
  • Diness JG, Skibsbye L, Jespersen T, Bartels ED, Sørensen US, Hansen RS, Grunnet M. Effects on atrial fibrillation in aged hypertensive rats by Ca2+-activated K+ channel inhibition. Hypertension 2011; 57:1129-35; PMID:21502564; http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.170613
  • Jenkins DP, Yu W, Brown BM, Lojkner LD, Wulff H. Development of a QPatch automated electrophysiology assay for identifying KCa3.1 inhibitors and activators. Assay Drug Dev Technol 2013; 11:551-60; PMID:24351043; http://dx.doi.org/10.1089/adt.2013.543
  • Korsgaard MP, Strøbæk D, Christophersen P. Automated planar electrode electrophysiology in drug discovery: examples of the use of QPatch in basic characterization and high content screening on Na(v), K(Ca)2.3, and K(v)11.1 channels. Comb Chem High Throughput Screen 2009; 12:51-63; PMID:19149491; http://dx.doi.org/10.2174/138620709787048037
  • Jorgensen S, Dyhring T, Brown DT, Strøbæk D, Christophersen P, Demnitz J. A high-throughput screening campaign for detection of Ca2+-activated K+ channel activators and inhibitors using a fluorometric imaging plate reader-based Tl+-influx assay. Assay Drug Dev Technol 2013; 11:163-72; PMID:23198866; http://dx.doi.org/10.1089/adt.2012.479

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.