8,335
Views
83
CrossRef citations to date
0
Altmetric
Review

Voltage gated sodium channels as drug discovery targets

, , , &
Pages 360-366 | Received 28 Jul 2015, Accepted 29 Jul 2015, Published online: 08 Dec 2015

References

  • Bagal SK, Brown AD, Cox PJ, Omoto K, Owen RM, Pryde DC, Sidders B, Skerratt SE, Stevens EB, Storer RI, et al. Ion Channels as Therapeutic Targets: A Drug Discovery Perspective. J Med Chem 2013; 56:593-624; PMID:23121096
  • Nardi A, Damann N, Hertrampf T, Kless A. Advances in Targeting Voltage-Gated Sodium Channels with Small Molecules. Chem Med Chem 2012; 7:1712-40.
  • Bagal SK, Chapman ML, Marron BE, Prime R, Storer RI, Swain NA. Recent progress in sodium channel modulators for pain. Bioorg Med Chem Letters 2014; 24:3690-9.
  • Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature 2011; 475:353-8.
  • Payandeh J, Gamal El-Din TM, Scheuer T, Zheng N, Catterall WA. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 2012; 486:135-9; PMID:22678296
  • Tsai C-J, Tani K, Irie K, Hiroaki Y, Shimomura T, McMillan DG, Cook GM, Schertler GFX, Fujiyoshi Y, Li X-D. Two Alternative Conformations of a Voltage-Gated Sodium Channel. J Mol Biol 2013; 425:4074-88; PMID:23831224
  • Bagnéris C, DeCaen PG, Hall BA, Naylor CE, Clapham DE, Kay CWM, Wallace BA. Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nat Commun 2013; 4; 2465; PMID:24051986
  • Shaya D, Findeisen F, Abderemane-Ali F, Arrigoni C, Wong S, Nurva SR, Loussouarn G, Minor DL, Jr. Structure of a Prokaryotic Sodium Channel Pore Reveals Essential Gating Elements and an Outer Ion Binding Site Common to Eukaryotic Channels. J Mol Biol 2014; 426:467-83; PMID:24120938; http://dx.doi.org/10.1016/j.jmb.2013.10.010
  • Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA. Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci 2014; 111:8428-33; http://dx.doi.org/10.1073/pnas.1406855111
  • England S, de Groot MJ. Subtype-selective targeting of voltage-gated sodium channels. British J Pharmacol 2009; 158:1413-25; http://dx.doi.org/10.1111/j.1476-5381.2009.00437.x
  • England S. Voltage-gated sodium channels: the search for subtype-selective analgesics. Expert Opin Investig Drugs 2008; 17:1849-64; http://dx.doi.org/10.1517/13543780802514559
  • Bhattacharya A, Wickenden AD, Chaplan SR. Sodium channel blockers for the treatment of neuropathic pain. Neurotherapeutics 2009; 6:663-78; PMID:19789071; http://dx.doi.org/10.1016/j.nurt.2009.08.001
  • Holland KD, Kearney JA, Glauser TA, Buck G, Keddache M, Blankston JR, Glaaser IW, Kass RS, Meisler MH. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neuroscience Letters 2008; 433:65-70; PMID:18242854; http://dx.doi.org/10.1016/j.neulet.2007.12.064
  • Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV, Abrahamsen B, Ostman J, Klugbauer N, Wood JN, Gardiner RM, et al. SCN9A mutations in paroxysmal clinical study extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 2006; 52:767-74; PMID:17145499; http://dx.doi.org/10.1016/j.neuron.2006.10.006
  • Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, Fan J, Bu D, Liu B, Fan Z, et al. Mutations in SCN9A, encoding a sodium channel α subunit, in patients with primary erythermalgia. J Med Genet 2004; 41:171-4; http://dx.doi.org/10.1136/jmg.2003.012153
  • Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006; 444:894-8; PMID:17167479; http://dx.doi.org/10.1038/nature05413
  • Faber CG, Lauria G, Merkies ISJ, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JGJ, Gerrits MM, Pierro T, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci USA 2012; 109:19444-9, S/1-S/3; http://dx.doi.org/10.1073/pnas.1216080109
  • Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S, Baets J, Ebbinghaus M, Goral RO, Stoedberg T, Hennings JC, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nature Genet 2013; 45:1399-404; PMID:24036948; http://dx.doi.org/10.1038/ng.2767
  • Zhang XY, Wen J, Yang W, Wang C, Gao L, Zheng LH, Wang T, Ran K, Li Y, Li X, et al. Gain-of-Function Mutations in SCN11A Cause Familial Episodic Pain. Am J Hum Genet 2013; 93:957-66; http://dx.doi.org/10.1016/j.ajhg.2013.09.016
  • Lipkind GM, Fozzard HA. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophysical J 1994; 66:1-13; http://dx.doi.org/10.1016/S0006-3495(94)80746-5
  • Xiao Y, Blumenthal K, Jackson JO, II, Liang S, Cummins TR. The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation. Mol Pharmacol 2010; 78:1124-34; http://dx.doi.org/10.1124/mol.110.066332
  • Peng K, Shu Q, Liu Z, Liang S. Function and Solution Structure of Huwentoxin-IV, a Potent Neuronal Tetrodotoxin (TTX)-sensitive Sodium Channel Antagonist from Chinese Bird Spider Selenocosmia huwena. J Biol Chem 2002; 277:47564-71; PMID:12228241; http://dx.doi.org/10.1074/jbc.M204063200
  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci 1996; 93:9270-5; PMID:8799190; http://dx.doi.org/10.1073/pnas.93.17.9270
  • Cattabeni F. Ralfinamide Newron Pharmaceuticals. IDrugs 2004; 7:935-9; PMID:15478019
  • Sheets PL, Heers C, Stoehr T, Cummins TR. Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J Pharmacol Exp Ther 2008; 326:89-99; http://dx.doi.org/10.1124/jpet.107.133413
  • Kemp MI. Structural trends among second-generation voltage-gated sodium channel blockers. Prog Med Chem 2010; 49:81-111; http://dx.doi.org/10.1016/S0079-6468(10)49003-7
  • Matulenko MA, Scanio MJC, Kort ME. Voltage-gated sodium channel blockers for the treatment of chronic pain. Curr Top Med Chem 2009; 9:362-76; PMID:19442207; http://dx.doi.org/10.2174/156802609788317883
  • England S, Rawson D. Isoform-selective voltage-gated Na+ channel modulators as next-generation analgesics. Future Med Chem 2010; 2:775-90; http://dx.doi.org/10.4155/fmc.10.26
  • Zajac MA. Process for preparing α-carboxamide pyrrolidine derivatives. Application: WOWO: (Convergence Pharmaceuticals Limited, UK). 2011:34pp
  • Goldberg YP, Price N, Namdari R, Cohen CJ, Lamers MH, Winters C, Price J, Young CE, Verschoof H, Sherrington R, et al. Treatment of Nav1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 2012; 153:80-5; PMID:22035805; http://dx.doi.org/10.1016/j.pain.2011.09.008
  • Williams BS, Felix JP, Priest BT, Brochu RM, Dai K, Hoyt SB, London C, Tang YS, Duffy JL, Parsons WH, et al. Characterization of a New Class of Potent Inhibitors of the Voltage-Gated Sodium Channel Nav1.7. Biochemistry 2007; 46:14693-703; PMID:18027973; http://dx.doi.org/10.1021/bi7018207
  • McCormack K, Santos S, Chapman ML, Krafte DS, Marron BE, West CW, Krambis MJ, Antonio BM, Zellmer SG, Printzenhoff D, et al. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc Natl Acad Sci U S A 2013; 110:E2724-E32; PMID:23818614; http://dx.doi.org/10.1073/pnas.1220844110
  • Bregman H, Berry L, Buchanan JL, Chen A, Du B, Feric E, Hierl M, Huang L, Immke D, Janosky B, et al. Identification of a Potent, State-Dependent Inhibitor of Nav1.7 with Oral Efficacy in the Formalin Model of Persistent Pain. J Medicinal Chem 2011; 54:4427-45; http://dx.doi.org/10.1021/jm200018k
  • Bagal SK, Bungay PJ, Denton SM, Gibson KR, Glossop MS, Hay TL, Kemp MI, Lane CAL, Lewis ML, Maw GN, et al. Discovery and Optimization of Selective Nav1.8 Modulator Series That Demonstrate Efficacy in Preclinical Models of Pain. ACS Med Chem Letters 2015; 6:650-4; PMID:26101568; http://dx.doi.org/10.1021/acsmedchemlett.5b00059
  • Triggle DJ. Calcium channel antagonists: Clinical uses-Past, present and future. Biochemical Pharmacol 2007; 74:1-9; http://dx.doi.org/10.1016/j.bcp.2007.01.016
  • Nantermet PG, Henze DA. Recent advances toward pain therapeutics. Annual Rep Med Chem 2011; 46:19-32; http://dx.doi.org/10.1016/B978-0-12-386009-5.00025-4