1,107
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions

, , , , &
Pages 89-99 | Received 01 Aug 2017, Accepted 02 Feb 2018, Published online: 01 Mar 2018

References

  • Hoshi T, Zagotta WN, Aldrich RW. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990;250:533–8. doi:10.1126/science.2122519
  • Zagotta WN, Hoshi T, Aldrich RW. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 1990;250:568–71. doi:10.1126/science.2122520
  • Zhou M, Morais-Cabral JH, Mann S, et al. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature. 2001;411:657–61. doi:10.1038/35079500
  • Consiglio JF, Andalib P, Korn SJ. Influence of pore residues on permeation properties in the Kv2.1 potassium channel. Evidence for a selective functional interaction of K+ with the outer vestibule. J Gen Physiol. 2003;121:111–24. doi:10.1085/jgp.20028756
  • Kurata HT, Fedida D. A structural interpretation of voltage-gated potassium channel inactivation. Prog Biophys Mol Biol. 2006;92:185–208.
  • Starkus JG, Kuschel L, Rayner MD, et al. Ion conduction through C-type inactivated Shaker channels. J Gen Physiol. 1997;110:539–50. doi:10.1085/jgp.110.5.539
  • Yellen G. The moving parts of voltage-gated ion channels. Q Rev Biophys. 1998;31:239–95. doi:10.1017/S0033583598003448
  • Choi KL, Aldrich RW, Yellen G. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-gated K+ channels. Proc Natl Acad Sci USA. 1991;88:5092–5. doi:10.1073/pnas.88.12.5092
  • Lopez-Barneo J, Hoshi T, Heinemann SH, et al. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors Channels. 1993;1:61–71.
  • Harris RE, Larsson HP, Isacoff EY. A permeant ion binding site located between two gates of the Shaker K+ channel. Biophys J. 1998;74:1808–20. doi:10.1016/S0006-3495(98)77891-9
  • Robbins J. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther. 2001;90:1–19. doi:10.1016/S0163-7258(01)00116-4
  • Abbott GW, Goldstein SA. A superfamily of small potassium channel subunits: form and function of the MinK-related peptides (MiRPs). Q Rev Biophys. 1998;31:357–98. doi:10.1017/S0033583599003467
  • Melman YF, Krummerman A, McDonald TV. KCNE regulation of KvLQT1 channels: structure-function correlates. Trends Cardiovascular Med. 2002;12:182–7. doi:10.1016/S1050-1738(02)00158-5
  • Barhanin J, Lesage F, Guillemare E, et al. KvLQT1 and lsK (minK) proteins associate to form the IKs cardiac potassium current [see comments]. Nature. 1996;384:78–80. doi:10.1038/384078a0
  • Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev. 2005;85:1205–53. doi:10.1152/physrev.00002.2005
  • Sanguinetti MC, Curran ME, Zou A, et al. Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature. 1996;384:80–3. doi:10.1038/384080a0
  • Dvir M, Peretz A, Haitin Y, et al. Recent molecular insights from mutated IKS channels in cardiac arrhythmia. Curr Opin Pharmacol. 2014;15:74–82. doi:10.1016/j.coph.2013.12.004
  • Peroz D, Rodriguez N, Choveau F, et al. Kv7.1 (KCNQ1) properties and channelopathies. J Physiol. 2008;586:1785–9. doi:10.1113/jphysiol.2007.148254
  • Ghosh S, Nunziato DA, Pitt GS. KCNQ1 assembly and function is blocked by long-QT syndrome mutations that disrupt interaction with calmodulin. Circ Res. 2006;98:1048–54. doi:10.1161/01.RES.0000218863.44140.f2
  • Haitin Y, Attali B. The C-terminus of Kv7 channels: a multifunctional module. J Physiol. 2008;586:1803–10. doi:10.1113/jphysiol.2007.149187
  • Howard RJ, Clark KA, Holton JM, et al. Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron. 2007;53:663–75. doi:10.1016/j.neuron.2007.02.010
  • Shamgar L, Ma L, Schmitt N, et al. Calmodulin is essential for cardiac IKS channel gating and assembly: impaired function in long-QT mutations. Circ Res. 2006;98:1055–63. doi:10.1161/01.RES.0000218979.40770.69
  • Wiener R, Haitin Y, Shamgar L, et al. The KCNQ1 (Kv7.1) COOH terminus, a multitiered scaffold for subunit assembly and protein interaction. J Biol Chem. 2008;283:5815–30. doi:10.1074/jbc.M707541200
  • Sachyani D, Dvir M, Strulovich R, et al. Structural basis of a Kv7.1 potassium channel gating module: studies of the intracellular c-terminal domain in complex with calmodulin. Structure. 2014;22:1582–94. doi:10.1016/j.str.2014.07.016
  • Wen H, Levitan IB. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci. 2002;22:7991–8001.
  • Xu Q, Chang A, Tolia A, et al. Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J Mol Biol. 2013;425:378–94. doi:10.1016/j.jmb.2012.11.023
  • Yus-Najera E, Santana-Castro I, Villarroel A. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem. 2002;277:28545–53. doi:10.1074/jbc.M204130200
  • Sun J, MacKinnon R. Cryo-EM structure of a KCNQ1/CaM complex reveals insights into congenital Long QT syndrome. Cell. 2017;169:1042–50 e9. doi:10.1016/j.cell.2017.05.019
  • Osteen JD, Barro-Soria R, Robey S, et al. Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels. Proc Natl Acad Sci U S A. 2012;109:7103–8. doi:10.1073/pnas.1201582109
  • Osteen JD, Gonzalez C, Sampson KJ, et al. KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate. Proc Natl Acad Sci U S A. 2010;107:22710–5. doi:10.1073/pnas.1016300108
  • Meisel E, Dvir M, Haitin Y, et al. KCNQ1 channels do not undergo concerted but sequential gating transitions in both the absence and the presence of KCNE1 protein. J Biol Chem. 2012;287:34212–24. doi:10.1074/jbc.M112.364901
  • Gibor G, Yakubovich D, Rosenhouse-Dantsker A, et al. An inactivation gate in the selectivity filter of KCNQ1 potassium channels. Biophys J. 2007;93:4159–72. doi:10.1529/biophysj.107.107987
  • Gagnon DG, Bezanilla F. A single charged voltage sensor is capable of gating the Shaker K+ channel. J Gen Physiol. 2009;133:467–83. doi:10.1085/jgp.200810082
  • Isacoff EY, Jan YN, Jan LY. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature. 1990;345:530–4. doi:10.1038/345530a0
  • Kavanaugh MP, Hurst RS, Yakel J, et al. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium. Neuron. 1992;8:493–7. doi:10.1016/0896-6273(92)90277-K
  • Tytgat J, Hess P. Evidence for cooperative interactions in potassium channel gating. Nature. 1992;359:420–3. doi:10.1038/359420a0
  • Yang Y, Yan Y, Sigworth FJ. How does the W434F mutation block current in Shaker potassium channels? J Gen Physiol. 1997;109:779–89. doi:10.1085/jgp.109.6.779
  • Zandany N, Ovadia M, Orr I, et al. Direct analysis of cooperativity in multisubunit allosteric proteins. Proc Natl Acad Sci U S A. 2008;105:11697–702. doi:10.1073/pnas.0804104105
  • Armstrong CM, Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977;70:567–90. doi:10.1085/jgp.70.5.567
  • Bezanilla F, Armstrong CM. Inactivation of the sodium channel. I. Sodium current experiments. J Gen Physiol. 1977;70:549–66. doi:10.1085/jgp.70.5.549
  • MacKinnon R, Aldrich RW, Lee AW. Functional stoichiometry of Shaker potassium channel inactivation. Science. 1993;262:757–9. doi:10.1126/science.7694359
  • Hoshi T, Zagotta WN, Aldrich RW. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 1991;7:547–56. doi:10.1016/0896-6273(91)90367-9
  • Liu S, Rasmusson RL, Campbell DL, et al. Activation and inactivation kinetics of an E-4031-sensitive current from single ferret atrial myocytes. Biophys J. 1996;70:2704–15. doi:10.1016/S0006-3495(96)79840-5
  • Yellen G, Sodickson D, Chen TY, et al. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys J. 1994;66:1068–75. doi:10.1016/S0006-3495(94)80888-4
  • Ogielska EM, Zagotta WN, Hoshi T, et al. Cooperative subunit interactions in C-type inactivation of K channels. Biophys J. 1995;69:2449–57. doi:10.1016/S0006-3495(95)80114-1
  • Panyi G, Sheng Z, Deutsch C. C-type inactivation of a voltage-gated K+ channel occurs by a cooperative mechanism. Biophys J. 1995;69:896–903. doi:10.1016/S0006-3495(95)79963-5
  • Devaraneni PK, Komarov AG, Costantino CA, et al. Semisynthetic K+ channels show that the constricted conformation of the selectivity filter is not the C-type inactivated state. Proc Natl Acad Sci U S A. 2013;110:15698–703. doi:10.1073/pnas.1308699110
  • Hoshi T, Armstrong CM. C-type inactivation of voltage-gated K+ channels: pore constriction or dilation? J Gen Physiol. 2013;141:151–60. doi:10.1085/jgp.201210888
  • Wu W, Gardner A, Sanguinetti MC. Cooperative subunit interactions mediate fast C-type inactivation of hERG1 K+ channels. J Physiol. 2014;592:4465–80. doi:10.1113/jphysiol.2014.277483
  • Pusch M, Magrassi R, Wollnik B, et al. Activation and inactivation of homomeric KvLQT1 potassium channels. Biophysical J. 1998;75:785–92. doi:10.1016/S0006-3495(98)77568-X
  • Tristani-Firouzi M, Sanguinetti MC. Voltage-dependent inactivation of the human K+ channel KvLQT1 is eliminated by association with minimal K+ channel (minK) subunits. J Physiol. 1998;510:37–45. doi:10.1111/j.1469-7793.1998.037bz.x
  • Peretz A, Schottelndreier H, Ben Aharon-Shamgar L, et al. Modulation of homomeric and heteromeric KCNQ1 channels by external acidification. J Physiol. 2002;545:751–66. doi:10.1113/jphysiol.2002.028381
  • Seebohm G, Scherer CR, Busch AE, et al. Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome. J Biol Chem. 2001;276:13600–5. doi:10.1074/jbc.M008373200
  • Seebohm G, Westenskow P, Lang F, et al. Mutation of colocalized residues of the pore helix and transmembrane segments S5 and S6 disrupt deactivation and modify inactivation of KCNQ1 K+ channels. J Physiol. 2005;563:359–68. doi:10.1113/jphysiol.2004.080887
  • Shalaby FY, Levesque PC, Yang WP, et al. Dominant-negative KvLQT1 mutations underlie the LQT1 form of long QT syndrome. Circulation. 1997;96:1733–6. doi:10.1161/01.CIR.96.6.1733
  • Baukrowitz T, Yellen G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron. 1995;15:951–60. doi:10.1016/0896-6273(95)90185-X
  • Hou P, Eldstrom J, Shi J, et al. Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening. Nat Commun. 2017; Nov 23;8(1):1730. doi:10.1038/s41467-017-01911-8