2,647
Views
19
CrossRef citations to date
0
Altmetric
Review

Elementary calcium signaling in arterial smooth muscle

, , &
Pages 505-519 | Received 24 Jul 2019, Accepted 23 Oct 2019, Published online: 04 Dec 2019

References

  • Schleifenbaum J, Kassmann M, Szijarto IA, et al. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res. 2014;115:263–272.
  • Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol. 1902;28:220–231.
  • Essin K, Welling A, Hofmann F, et al. Indirect coupling between Cav1.2 channels and ryanodine receptors to generate Ca2+ sparks in murine arterial smooth muscle cells. J Physiol. 2007;584:205–219.
  • Hashad AM, Harraz OF, Brett SE, et al. Caveolae link CaV3. 2 channels to BKCa-mediated feedback in vascular smooth muscle. Arterioscl Throm Vas Biol. 2018;38:2371–2381.
  • Fan G, Kaßmann M, Hashad AM, et al. Differential targeting and signalling of voltage‐gated T‐type Cav3. 2 and L‐type Cav1. 2 channels to ryanodine receptors in mesenteric arteries. J Physiol. 2018;596:4863–4877.
  • Kassmann M, Szijarto IA, García‐Prieto CF, et al. Role of ryanodine type 2 receptors in elementary Ca2+ signaling in arteries and vascular adaptive responses. J Am Heart Assoc. 2019;8:e010090.
  • Moosmang S, Schulla V, Welling A, et al. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. Embo J. 2003;22:6027–6034.
  • Nelson MT, Cheng H, Rubart M, et al. Relaxation of arterial smooth muscle by calcium sparks. Science. 1995;270:633–637.
  • Wang S-Q, Wei C, Zhao G, et al. Imaging microdomain Ca2+ in muscle cells. Circ Res. 2019;6:1011–1022.
  • Jaggar JH, Wellman GC, Heppner TJ, et al. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand. 1998;164:577–587.
  • Furstenau M, Lohn M, Ried C, et al. Calcium sparks in human coronary artery smooth muscle cells resolved by confocal imaging. J Hypertens. 2000;18:1215–1222.
  • Knot HJ, Standen NB, Nelson MT. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels. J Physiol. 1998;508(Pt 1):211–221.
  • Perez GJ, Bonev AD, Patlak JB, et al. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J Gen Physiol. 1999;113:229–238.
  • Perez GJ, Bonev AD, Nelson MT. Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol. 2001;281:C1769–75.
  • Jaggar JH, Porter VA, Lederer WJ, et al. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol. 2000;278:C235–56.
  • Gollasch M, Wellman GC, Knot HJ, et al. Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events. Circ Res. 1998;83:1104–1114.
  • Cannell MB, Soeller C. Numerical analysis of ryanodine receptor activation by L-type channel activity in the cardiac muscle diad. Biophys J. 1997;73:112–122.
  • Mejia-Alvarez R, Kettlun C, Rios E, et al. Unitary Ca2+ current through cardiac ryanodine receptor channels under quasi-physiological ionic conditions. J Gen Physiol. 1999;113:177–186.
  • Brenner R, Perez GJ, Bonev AD, et al. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature. 2000;407:870–876.
  • Pluger S, Faulhaber J, Furstenau M, et al. Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure. Circ Res. 2000;87:E53–60.
  • Sausbier M, Arntz C, Bucurenciu I, et al. Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation. 2005;112:60–68.
  • Benham CD, Bolton TB. Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol. 1986;381:385–406.
  • Filosa JA, Bonev AD, Straub SV, et al. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci. 2006;9:1397–1403.
  • Contreras GF, Castillo K, Enrique N, et al. A BK (Slo1) channel journey from molecule to physiology. Channels (Austin). 2013;7:442–458.
  • Papp R, Nagaraj C, Zabini D, et al. Targeting TMEM16A to reverse vasoconstriction and remodelling in idiopathic pulmonary arterial hypertension. Eur Respir J. 2019;53: 1800965.
  • Heinze C, Seniuk A, Sokolov MV, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure. J Clin Invest. 2014;124:675–686.
  • Askew Page HR, Dalsgaard T, Baldwin SN, et al. TMEM16A is implicated in the regulation of coronary flow and is altered in hypertension. Br J Pharmacol. 2019;176:1635–1648.
  • Dam VS, Boedtkjer DM, Aalkjaer C, et al. The bestrophin- and TMEM16A-associated Ca(2+)- activated Cl(-) channels in vascular smooth muscles. Channels (Austin). 2014;8:361–369.
  • Essin K, Gollasch M. Role of ryanodine receptor subtypes in initiation and formation of calcium sparks in arterial smooth muscle: comparison with striated muscle. J Biomed Biotechnol. 2009;2009:135249.
  • Rios E, Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987;325:717–720.
  • Klein MG, Schneider MF. Ca2+ sparks in skeletal muscle. Prog Biophys Mol Biol. 2006;92:308–332.
  • Armstrong CM, Bezanilla FM, Horowicz P. Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N,N’-tetracetic acid. Biochim Biophys Acta. 1972;267:605–608.
  • Cheng H, Lederer WJ. Calcium sparks. Physiol Rev. 2008;88:1491–1545.
  • Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. A J Physiol. 1983;245:C1–14.
  • Domeier TL, Blatter LA, Zima AV. Changes in intra-luminal calcium during spontaneous calcium waves following sensitization of ryanodine receptor channels. Channels (Austin). 2010;4:87–92.
  • Devine CE, Somlyo AV, Somlyo AP. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol. 1972;52:690–718.
  • Lesh RE, Nixon GF, Fleischer S, et al. Localization of ryanodine receptors in smooth muscle. Circ Res. 1998;82:175–185.
  • Carrington WA, Lynch RM, Moore ED, et al. Superresolution three-dimensional images of fluorescence in cells with minimal light exposure. Science. 1995;268:1483–1487.
  • Bers DM, Stiffel VM. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling. A J Physiol. 1993;264:C1587–93.
  • Cannell MB, Cheng H, Lederer WJ. Spatial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Biophys J. 1994;67:1942–1956.
  • Soeller C, Baddeley D. Super-resolution imaging of EC coupling protein distribution in the heart. J Mol Cell Cardiol. 2013;58:32–40.
  • Moore ED, Voigt T, Kobayashi YM, et al. Organization of Ca2+ release units in excitable smooth muscle of the guinea-pig urinary bladder. Biophys J. 2004;87:1836–1847.
  • Coronado R, Morrissette J, Sukhareva M, et al. Structure and function of ryanodine receptors. Am J Physiol Cell Physiol. 1994;266:C1485–504.
  • Franzini-Armstrong C, Protasi F. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev. 1997;77:699–729.
  • Mohler PJ, Wehrens XHT. Mechanisms of human arrhythmia syndromes: abnormal cardiac macromolecular interactions. Physiology. 2007;22:342–350.
  • Boittin F-X, Macrez N, Halet G, et al. Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes. Am J Physiol Cell Physiol. 1999;277:C139–51.
  • Fritz N, Morel J-L, Jeyakumar LH, et al. RyR1-specific requirement for depolarization-induced Ca2+ sparks in urinary bladder smooth muscle. J Cell Sci. 2007;120:3784–3791.
  • Mironneau J, Arnaudeau S, Macrez-Lepretre N, et al. Ca2+ sparks and Ca2+ waves activate different Ca2+-dependent ion channels in single myocytes from rat portal vein. Cell Calcium. 1996;20:153–160.
  • Coussin F, Macrez N, Morel J-L, et al. Requirement of ryanodine receptor subtypes 1 and 2 for Ca2+ -induced Ca2+ release in vascular myocytes. J Biol Chem. 2000;275:9596–9603.
  • Hakamata Y, Nakai J, Takeshima H, et al. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 1992;312:229–235.
  • Giannini G. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995;128:893–904.
  • Pritchard HAT, Pires PW, Yamasaki E, et al. Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2018;115:E9745–E52.
  • Wang L, Yin J, Nickles HT, et al. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest. 2012;122:4218–4230.
  • Buschmann I, Pries A, Styp-Rekowska B, et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development. 2010;137:2187–2196.
  • Mironneau J, Coussin F, Jeyakumar LH, et al. Contribution of ryanodine receptor subtype 3 to ca2+ responses in Ca2+-overloaded cultured rat portal vein myocytes. J Biol Chem. 2001;276:11257–11264.
  • Bertocchini F, Ovitt CE, Conti A, et al. Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. Embo J. 1997;16:6956–6963.
  • Löhn M, Jessner W, Fürstenau M, et al. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res. 2001;89:1051–1057.
  • Sonnleitner A. Functional properties of the ryanodine receptor type 3 (RyR3) Ca2+ release channel. Embo J. 1998;17:2790–2798.
  • Perez CF, Lopez JR, Allen PD. Expression levels of RyR1 and RyR3 control resting free Ca2+ in skeletal muscle. Am J Physiol Cell Physiol. 2005;288:C640–9.
  • Miyatake R, Furukawa A, Matsushita M, et al. Tissue-specific alternative splicing of mouse brain type ryanodine receptor/calcium release channel mRNA. FEBS Lett. 1996;395:123–126.
  • Jiang D, Xiao B, Li X, et al. Smooth muscle tissues express a major dominant negative splice variant of the type 3 Ca2+ release channel (ryanodine receptor). J Biol Chem. 2003;278:4763–4769.
  • Matsuki K, Kato D, Takemoto M, et al. Negative regulation of cellular Ca2+ mobilization by ryanodine receptor type 3 in mouse mesenteric artery smooth muscle. Am J Physiol Cell Physiol. 2018;315:C1–C9.
  • Mederos y Schnitzler M, Storch U, Meibers S, et al. Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. Embo J. 2008;27:3092–3103.
  • Arnaudeau S, Macrez-Lepretre N, Mironneau J. Activation of calcium sparks by angiotensin II in vascular myocytes. Biochem Biophys Res Commun. 1996;222:809–815.
  • Bonev AD, Jaggar JH, Rubart M, et al. Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries. Am J Physiol Cell Physiol. 1997;273:C2090–5.
  • Bootman M, Niggli E, Berridge M, et al. Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol. 1997;499(2):307–314.
  • Yao Y, Choi J, Parker I. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol. 1995;482(3):533–553.
  • Rainbow RD, Macmillan D, McCarron JG. The sarcoplasmic reticulum Ca2+ store arrangement in vascular smooth muscle. Cell Calcium. 2009;46:313–322.
  • Rahman T, Taylor CW. Dynamic regulation of IP3 receptor clustering and activity by IP3. Channels (Austin). 2009;3:226–232.
  • Yuchi Z, Van Petegem F. Common allosteric mechanisms between ryanodine and inositol-1,4,5-trisphosphate receptors. Channels (Austin). 2011;5:120–123.
  • Bychkov R, Gollasch M, Ried C, et al. Regulation of spontaneous transient outward potassium currents in human coronary arteries. Circulation. 1997;95:503–510.
  • Gollasch M, Ried C, Bychkov R, et al. K+ currents in human coronary artery vascular smooth muscle cells. Circ Res. 1996;78:676–688.
  • Saeed Y, Temple IP, Borbas Z, et al. Structural and functional remodeling of the atrioventricular node with aging in rats: the role of hyperpolarization-activated cyclic nucleotide-gated and ryanodine 2 channels. Heart Rhythm. 2018;15:752–760.
  • Ahir BK, Pratten MK. The impact of caffeine on connexin expression in the embryonic chick cardiomyocyte micromass culture system. J Appl Toxicol. 2016;36:903–913.
  • Welsh DG, Segal SS. Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. A J Physiol. 1998;274:H178–86.
  • Xiong Z, Sperelakis N. Regulation of L-type calcium channels of vascular smooth muscle cells. J Mol Cell Cardiol. 1995;27:75–91.
  • Jung S, Strotmann R, Schultz G, et al. TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol. 2002;282:C347–59.
  • Dietrich A,Y, Schnitzler MM, Gollasch M, et al. Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol. 2005;25:6980–6989.
  • Guan Z, Osmond DA, Inscho EW. P2X receptors as regulators of the renal microvasculature. Trends Pharmacol Sci. 2007;28:646–652.
  • Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3:a003947.
  • Sather WA, Tanabe T, Zhang J-F, et al. Distinctive biophysical and pharmacological properties of class A (BI) calcium channel α1 subunits. Neuron. 1993;11:291–303.
  • Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985;316:440–443.
  • Casamassima F, Hay AC, Benedetti A, et al. L‐type calcium channels and psychiatric disorders: a brief review. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:1373–1390.
  • Abd El-Rahman RRA, Harraz OF, Brett SE, et al. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: role in myogenic tone development. Am J Physiol Heart Circ Physiol. 2013;304:H58–71.
  • Catterall WA, Perez-Reyes E, Snutch TP, et al. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev. 2005;57:411–425.
  • Hansen PB, Jensen BL, Andreasen D, et al. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Circ Res. 2001;89:630–638.
  • Liao P, Yong TF, Liang MC, et al. Splicing for alternative structures of Ca1.2 Ca channels in cardiac and smooth muscles. Cardiovasc Res. 2005;68:197–203.
  • Lopez-Lopez JR, Hell JW. Increased phosphorylation of the neuronal L-type Ca(2+) channel Ca(v)1.2 during aging. Proc Natl Acad Sci U S A. 2003;100:16018–16023.
  • Takimoto K, Li D, Nerbonne JM, et al. Distribution, splicing and glucocorticoid-induced expression of Cardiacα1Candα1DVoltage-gated Ca2+Channel mRNAs. J Mol Cell Cardiol. 1997;29:3035–3042.
  • Lopez-Lopez JR, Shacklock PS, Balke CW, et al. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science. 1995;268:1042–1045.
  • Augustine GJ, Santamaria F, Tanaka K. Local calcium signaling in neurons. Neuron. 2003;40:331–346.
  • Wray S. Calcium signaling in smooth muscle. Handbook of cell signaling. Elsevier; 2010. p. 1009–1025.
  • Zhang J, Berra-Romani R, Sinnegger-Brauns MJ, et al. Role of Cav1. 2 L-type Ca2+ channels in vascular tone: effects of nifedipine and Mg2+. Am J Physiol Heart Circ Physiol. 2007;292:H415–H25.
  • Striessnig J, Bolz HJ, Koschak A. Channelopathies in Cav1. 1, Cav1. 3, and Cav1. 4 voltage-gated L-type Ca2+ channels. Pflüg Arch Eur J Phy. 2010;460:361–374.
  • Navedo MF, Amberg GC, Westenbroek RE, et al. Cav1. 3 channels produce persistent calcium sparklets, but Cav1. 2 channels are responsible for sparklets in mouse arterial smooth muscle. Am J Physiol Heart Circ Physiol. 2007;293:H1359–H70.
  • Poulsen CB, Al-Mashhadi RH, Cribbs LL, et al. T-type voltage-gated calcium channels regulate the tone of mouse efferent arterioles. Kidney Int. 2011;79:443–451.
  • Hansen PB. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels. Acta Physiol. 2013;207:690–699.
  • Kuo IY, Ellis A, Seymour VA, et al. Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries. J Cereb Blood Flow Metab. 2010;30:1226–1239.
  • McNeish AJ, Jimenez Altayo F, Garland CJ. Evidence both L-type and non-L-type voltage-dependent calcium channels contribute to cerebral artery vasospasm following loss of NO in the rat. Vascul Pharmacol. 2010;53:151–159.
  • Braunstein TH, Inoue R, Cribbs L, et al. The role of L- and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles. J Vasc Res. 2009;46:138–151.
  • Ball CJ, Wilson DP, Turner SP, et al. Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade. Hypertension. 2009;53:654–660.
  • Howitt L, Kuo IY, Ellis A, et al. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles. Cardiovasc Res. 2013;98:449–457.
  • Wang SQ, Song LS, Lakatta EG, et al. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature. 2001;410:592–596.
  • Collier ML, Ji G, Wang YX, et al. Calcium-induced calcium release in smooth muscle: loose coupling between the action potential and calcium release. J Gen Physiol. 2000;115:653–662.
  • Wu C, Sui G, Fry CH. The role of the L‐type Ca2+ channel in refilling functional intracellular Ca2+ stores in guinea‐pig detrusor smooth muscle. J Physiol. 2002;538:357–369.
  • Fosset M, Jaimovich E, Delpont E, et al. [3H]nitrendipine receptors in skeletal muscle. J Biol Chem. 1983;258:6086–6092.
  • Block BA, Imagawa T, Campbell KP, et al. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988;107:2587–2600.
  • Franzini-Armstrong C, Protasi F, Ramesh V. Shape, size, and distribution of Ca(2+) release units and couplons in skeletal and cardiac muscles. Biophys J. 1999;77:1528–1539.
  • Carl SL, Felix K, Caswell AH, et al. Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium. J Cell Biol. 1995;129:673–682.
  • Cheng H, Lederer MR, Xiao RP, et al. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium. 1996;20:129–140.
  • Lohn M, Furstenau M, Sagach V, et al. Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res. 2000;87:1034–1039.
  • Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, et al. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res. 2014;115:650–661.
  • Zavaritskaya O, Zhuravleva N, Schleifenbaum J, et al. Role of KCNQ channels in skeletal muscle arteries and periadventitial vascular dysfunction. Hypertension. 2013;61:151–159.
  • Tsvetkov D, Tano JY, Kassmann M, et al. The role of DPO-1 and XE991-sensitive potassium channels in perivascular adipose tissue-mediated regulation of vascular tone. Front Physiol. 2016;7:335.
  • Löhn M, Dubrovska G, Lauterbach B, et al. Periadventitial fat releases a vascular relaxing factor. Faseb J. 2002;16:1057–1063.
  • Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 2003;83:117–161.
  • Soong TW, Stea A, Hodson CD, et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science. 1993;260:1133–1136.
  • Martin RL, Lee J-H, Cribbs LL, et al. Mibefradil block of cloned T-type calcium channels. J Pharmacol Exp Ther. 2000;295:302–308.
  • Yoo HY, Zheng H, Nam JH, et al. Facilitation of Ca2+-activated K+ channels (IKCa1) by mibefradil in B lymphocytes. Pflüg Arch Eur J Phy. 2008;456:549–560.
  • Viana F, Van Den Bosch L, Missiaen L, et al. Mibefradil (Ro 40m5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium. 1997;22:299–311.
  • Strege PR, Bernard CE, Ou Y, et al. Effect of mibefradil on sodium and calcium currents. Am J Physiol Gastrointest Liver Physiol. 2005;289:G249–G53.
  • Lee J-H, Gomora JC, Cribbs LL, et al. Nickel block of three cloned T-type calcium channels: low concentrations selectively block α1H. Biophys J. 1999;77:3034–3042.
  • Kang H-W, Park J-Y, Jeong S-W, et al. A molecular determinant of nickel inhibition in Cav3. 2 T-type calcium channels. J Biol Chem. 2006;281:4823–4830.
  • Mangoni ME, Traboulsie A, Leoni A-L, et al. Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3. 1/α1G T-type calcium channels. Circ Res. 2006;98:1422–1430.
  • Pluteanu F, Cribbs LL. Regulation and function of Cav3. 1 T-type calcium channels in IGF-1 stimulated pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol. 2010;300: C517–C525.
  • Harraz OF, Brett SE, Zechariah A, et al. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis. Arterioscler Thromb Vasc Biol. 2015;35:1843–1851.
  • Bjorling K, Morita H, Olsen MF, et al. Myogenic tone is impaired at low arterial pressure in mice deficient in the low-voltage-activated CaV 3.1 T-type Ca(2+) channel. Acta Physiol. 2013;207:709–720.
  • Jensen LJ, Nielsen MS, Salomonsson M, et al. T-type Ca(2+) channels and autoregulation of local blood flow. Channels (Austin). 2017;11:183–195.
  • Saeki T, Suzuki Y, Yamamura H, et al. A junctophilin-caveolin interaction enables efficient coupling between ryanodine receptors and BKCa channels in the Ca(2+) microdomain of vascular smooth muscle. J Biol Chem. 2019;294:13093–13105.
  • Gollasch M, Tank J, Luft FC, et al. The BK channel beta1 subunit gene is associated with human baroreflex and blood pressure regulation. J Hypertens. 2002;20:927–933.
  • Behringer EJ, Hakim MA. Functional interaction among KCa and TRP channels for cardiovascular physiology: modern perspectives on aging and chronic disease. Int J Mol Sci. 2019;20:1380.
  • Tsvetkov D, Kolpakov E, Kassmann M, et al. Distinguishing between biological and technical replicates in hypertension research on isolated arteries. Front Med (Lausanne). 2019;6:126.
  • Gollasch M. Adipose-vascular coupling and potential therapeutics. Annu Rev Pharmacol Toxicol. 2017;57:417–436.