2,190
Views
3
CrossRef citations to date
0
Altmetric
Review

TRPV1 channels as a newly identified target for vitamin D

, ORCID Icon, & ORCID Icon
Pages 360-374 | Received 03 Mar 2021, Accepted 15 Mar 2021, Published online: 07 Apr 2021

References

  • Bruce, W H. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr. 2005 Feb;135(2):317–22. PMID: 15671234. doi:https://doi.org/10.1093/jn/135.2.317
  • Holick MF. Vitamin D deficiency. N Engl J Med [Internet]. 2007 ; 357:266–281. http://www.nejm.org/doi/abs/https://doi.org/10.1056/NEJMra070553.
  • Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr. 1998;128(1):68–72.
  • Kincse G, Bhattoa PH, Herédi E. Vitamin D3 levels and bone mineral density in patients with psoriasis and/or psoriatic arthritis. J Dermatol. 2015;42(7):679–684.
  • Orgaz-Molina J, Buendía-Eisman A, Arrabal-Polo MA. Deficiency of serum concentration of 25-hydroxyvitamin D in psoriatic patients: a case-control study. J Am Acad Dermatol. 2012;67(5):931–938.
  • Cantorna MT. Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog Biophys Mol Biol. 2006;92(1):60–64.
  • McLaughlin L, Clarke L, Khalilidehkordi E. Vitamin D for the treatment of multiple sclerosis: a meta-analysis. J Neurol. 2018;265(12):2893–2905.
  • Moretti R, Morelli ME, Caruso P. Vitamin D in neurological diseases: a rationale for a pathogenic impact. Int J Mol Sci. 2018;19(8):1–27.
  • COVID-19 rapid evidence summary: vitamin D for COVID-19. Public Heal Engl. 2020;1–4.
  • Jain A, Chaurasia R, Sengar NS. Analysis of vitamin D level among asymptomatic and critically ill COVID-19 patients and its correlation with inflammatory markers. Sci Rep. 2020;10(1):1–8.
  • McLachlan CS. The angiotensin-converting enzyme 2 (ACE2) receptor in the prevention and treatment of COVID-19 are distinctly different paradigms. Clin Hypertens. 2020;26(1):14–16.
  • Daneshkhah A, Agrawal V, Eshein A. The possible role of vitamin D in suppressing cytokine storm and associated mortality in COVID-19 patients. 2020;25.
  • Kato S. The function of vitamin D receptor in vitamin D action. J Biochem [Internet]. 2000. Available from: [cited 2019 Oct 3]. 127:717–722. https://academic.oup.com/jb/article-lookup/doi/https://doi.org/10.1093/oxfordjournals.jbchem.a022662.
  • Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D3. Endocrinol Metab Clin North Am [Internet]. 2010. Available from: [cited 2019 Oct 3]. 39:255–269. https://linkinghub.elsevier.com/retrieve/pii/S0889852910000095.
  • Von Essen MR, Kongsbak M, Schjerling P. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11(4):344–349.
  • Long W, Fatehi M, Soni S. Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel. J Physiol. 2020;598(19):4321–4338.
  • Bhattarai P, Bhattarai JP, Kim MS. Non-genomic action of vitamin D3 on N-methyl-D-aspartate and kainate receptor-mediated actions in juvenile gonadotrophin-releasing hormone neurons. Reprod Fertil Dev. 2017;29(6):1231–1238.
  • Brewer LD, Thibault V, Chen KC. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci. 2001;21(1):98–108.
  • Julius D. TRP channels and pain. Annu Rev Cell Dev Biol [Internet]. 2013. Available from: [cited 2019 Oct 3]. 29:355–384. http://www.ncbi.nlm.nih.gov/pubmed/24099085.
  • Benham CD, Gunthorpe MJ, Davis JB. TRPV channels as temperature sensors. Cell Calcium [Internet]. 2003. Available from: [cited 2019 Oct 3]. 33:479–487. http://www.ncbi.nlm.nih.gov/pubmed/12765693.
  • Altier C. Spicing up the sensation of stretch: TRPV1 controls mechanosensitive piezo channels. Sci Signal. 2015;(363):8. https://doi.org/10.1126/scisignal.aaa6769.
  • Christie S, Wittert GA, Li H. Involvement of TRPV1 channels in energy homeostasis. Front Endocrinol (Lausanne). 2018;9. https://doi.org/10.3389/fendo.2018.00420.
  • Gram DX, Holst JJ, Szallasi A. TRPV1: a potential therapeutic target in type 2 diabetes and comorbidities?. Trends Mol Med [Internet]. 2017. Available from: [cited 2019 Oct 3]. 23:1002–1013. https://linkinghub.elsevier.com/retrieve/pii/S1471491417301648.
  • Lee L-Y GQ. Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol [Internet]. 2009. Available from: [cited 2019 Oct 3]. 9:243–249. https://linkinghub.elsevier.com/retrieve/pii/S1471489209000186.
  • Carnevale V, Rohacs T. TRPV1: a target for rational drug design. 2016;1–20.
  • Moran MM. TRP Channels as potential drug targets. 2018.
  • Caterina MJ, Schumacher MA, Tominaga M. The capsaicin receptor: a heat-activated ion channel in the pain pathway. 1997;389.
  • Bertin S, Aoki-nonaka Y, De JPR. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nat Immunol. 2016;15(11):1055–1063.
  • Tripathy B, Majhi RK. TRPV1 channel as the membrane vitamin D receptor: solving part of the puzzle. J Physiol. 2020;0:1–3.
  • Mellanby E. An experimental investigation on rickets [internet]. Lancet. 1919;1:407–412.
  • DeLuca HF. History of the discovery of vitamin D and its active metabolites. Bonekey Rep. 2014; 3;479.
  • McCollum EV, Simaionds N, Becker JE. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. [Internet]. J Biol Chem 2002;277(19):E8. http://www.jbc.org/
  • Chick DH. Study of rickets in Vienna 1919-1922. Med Hist. 1976;20(1):41–51.
  • Chen T.C. (1999) Photobiology of Vitamin D. In: Holick M.F. (eds) Vitamin D. Nutrition and Health. Humana Press, Totowa, NJ.
  • Askew FA, Bourdillon RB, Bruce HM. The distillation of vitamin D. Proc. R Soc.. 1930;748:76–90.
  • Esvelt RP, Schnoes HK, Deluca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light 1. Arch Biochem Biophys. 1978;(2):282–286. https://doi.org/10.1016/S0003-9861(78)80010-1.
  • G Shipley BP, Kramer B, Howland J. Studies upon calcification in vitro. Biochem J. 1926;(2):379–387. https://doi.org/10.1042/bj0200379.
  • Underwood JL, Deluca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1984; 493–498.
  • Dowdle EB, Schachter D, Schenker H. Requirement for vitamin D for the active transport of calcium by the intestine. Am J Physiol. 1960;(2):269–274. https://doi.org/10.1152/ajplegacy.1960.198.2.269.
  • Nicolaysen R. Studies upon the mode of action of vitamin D. III. The influence of vitamin D on the absorption of calcium and phosphorus in the rat. Biochem J. 1937;(1):122–129. https://doi.org/10.1042/bj0310122.
  • Migicovsky BB, Jamieson JWS. Calcium absorption and vitamin D. Can J Biochem Physiol. 1955;33(1):221–224..
  • Harrison HE, Harrison HC, Stein EH. Factors influencing calcium absorption. Fed Proc. 1959;18:1085–1092.
  • Hurwitz S, Bar A. Site of vitamin D action in chick intestine. Am J Physiol. 1972;222(3):761–767.
  • Wasserman RH, Kallfelz FA. Vitamin D3 and unidirectional calcium fluxes across the rachitic chick duodenum. Am J Physiol. 1962;203(2):221–224.
  • Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr. 2004;134(11):3137–3139.
  • Cross HS, Corradino RA, Peterlik M. Calcitriol-dependent, paracellular sodium transport in the embryonic chick intestine. Mol Cell Endocrinol. 1987;53(1–2):53–58.
  • Jungbluth H, Binswanger U. Unidirectional duodenal and jejunal calcium and phosphorus transport in the rat: effects of dietary phosphorus depletion, ethane-1-hydroxy-1,1-diphosphonate and 1,25 dihydroxycholecalciferol. Res Exp Med. 1989;189(6):439–449.
  • Schachter D, Rosen SM. Active transport of Ca 45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959;(2):357–362. https://doi.org/10.1152/ajplegacy.1959.196.2.357.
  • Nicolaysen R, Eeglarsen N, Jacob Malm O. Physiology of calcium metabolism. Physiol Rev. 1953;33(3):424-444.
  • Schacter D, Kimberg DV, Schenker H. Active transport of calcium by intestine: action and bio-assay of vitamin D. Am J Physiol. 1961;200(6):1263–1271.
  • Norman AW. Actinomycin D and the response to vitamin D. Science. 1965;149(3680):184–186.
  • Norman AW. Vitamin D mediated synthesis of rapidly labeled RNA from intestinal mucosa. Biochem Biophys Res Commun. 1966;23(3):340–355.
  • Zull JE, Czarnowska-Misztal E, Deluca HF. Actinomycin D inhibition of vitamin D action. Science. 1965;149(3680):182–184.
  • Zull JE, Czarnowska-Misztal E, DeLuca HF. On the relationship between vitamin D action and actinomycin-sensitive processes. Proc Natl Acad Sci. 1966;55(1):177–184.
  • Haussler MR, Norman AW. Chromosomal receptor for a vitamin D metabolite. Nutr Rev. 2009;43(6):181–183.
  • Kream BE, Reynolds RD, Knutson JC. Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys. 1976;176(2):779–787.
  • Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A. 1988;85(10):3294–3298.
  • Long MD, Sucheston-Campbell LE, Campbell MJ. Vitamin D receptor and RXR in the post-genomic era. J Cell Physiol. 2015;230(4):758–766.
  • Bettoun DJ, Burris TP, Houck KA. Retinoid X receptor is a nonsilent major contributor to vitamin D receptor-mediated transcriptional activation. Mol Endocrinol. 2003;17(11):2320–2328.
  • Bachelet M, Ulmann A, Lacour B. Early stimulation of alkaline phosphatase activity in response to 1, 25-dihydroxycholecalciferol. Biochem Biophys Res Commun. 1979;89(2):694–700.
  • Nemere I, Szego CM. Early actions of parathyroid hormone and 1, 25-dihydroxycholecalciferol on isolated epithelial cells from rat intestine: i. Limited lysosomal enzyme release and calcium uptake. Endocrinology. 1981;108:2180–2187.
  • Lucas PA, Roullet C, Duchambon P. Rapid stimulation of calcium uptake by isolated rat enterocytes by 1,25(OH)2D3. Pflügers Arch Eur J Physiol. 1989;413(4):407–413.
  • Bhalla AK, Amento EP, Clemens TL. Specific high-affinity receptors for 1,25-dihydroxyvitamin in human peripheral blood mononuclear cells: presence in monocytes and induction in t lymphocytes following activation. J Clin Endocrinol Metab. 1983;57(6):1308–1310.
  • Provvedini DM, Tsoukas CD, Deftos LJ. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science. 1983;221(4616):1181–1182.
  • Grammatiki M, Rapti E, Karras S. Vitamin D and diabetes mellitus: causal or casual association?. Rev Endocr Metab Disord [Internet]. 2017. Available from: [cited 2019 Oct 3]. 18:227–241. http://link.springer.com/https://doi.org/10.1007/s11154-016-9403-y.
  • Gregoriou E, Mamais I, Tzanetakou I. The effects of vitamin D supplementation in newly diagnosed type 1 diabetes patients: systematic review of randomized controlled trials. Rev Diabet Stud [Internet]. 2017. Available from: [cited 2019 Oct 3]. 14:260–268. http://www.soc-bdr.org/content/e4/e887/volRdsVolumes19576/issRdsIssues20488/chpRdsChapters20506/strRdsArticles20507/?preview=preview.
  • Cantorna MT, Munsick C, Bemiss C. 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr. 2000;130(11):2648–2652.
  • Cantorna MT, Hayes CE, Deluca HF. 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci U S A. 1996;93(15):7861–7864.
  • Cantorna M, Snyder L, Lin Y-D. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients [Internet]. 2015. Available from: [cited 2019 Oct 3]. 7:3011–3021. http://www.mdpi.com/2072-6643/7/4/3011.
  • Von Essen MR, Kongsbak M, Schjerling P. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol [Internet]. Available from:. 2010;11(4):344–349.
  • Li X, Liu Y, Zheng Y. The effect of vitamin D supplementation on glycemic control in type 2 diabetes patients: a systematic review and meta-analysis. Nutrients [Internet]. 2018. Available from: [cited 2019 Oct 3]. 10:375.http://www.mdpi.com/2072-6643/10/3/375.
  • Yong WC, Sanguankeo A, Upala S. Effect of vitamin D supplementation in chronic widespread pain: a systematic review and meta-analysis. Clin Rheumatol. 2017;36(12):2825–2833.
  • Caterina MJ, Schumacher MA, Tominaga M. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389(6653):816–824.
  • Altieri B, Muscogiuri G, Barrea L. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept. Rev Endocr Metab Disord [Internet]. 2017. Available from: [cited 2019 Oct 3]. 18:335–346. http://link.springer.com/https://doi.org/10.1007/s11154-016-9405-9.
  • Suri A, Szallasi A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol Sci. 2008;29(1):29–36.
  • Berezowska M, Coe S, Dawes H. Effectiveness of vitamin D supplementation in the management of multiple sclerosis: a systematic review. Int J Mol Sci [Internet]. 2019. Available from: [cited 2019 Oct 3]. 20:1301. https://www.mdpi.com/1422-0067/20/6/1301.
  • Li M, Zhu M, Xu Q. Sensation of TRPV1 via 5-hydroxytryptamine signaling modulates pain hypersensitivity in a 6-hydroxydopamine induced mice model of parkinson’s disease. Biochem Biophys Res Commun [Internet]. Available from. 2019;521(4):868–873.
  • Nam JH, Park ES, Won SY. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson’s disease via CNTF. Brain. 2015;138(12):3610–3622.
  • Barrea L, Savanelli MC, Di Somma C. Vitamin D and its role in psoriasis: an overview of the dermatologist and nutritionist. Rev Endocr Metab Disord. 2017;18(2):195–205.
  • Riol-Blanco L, Ordovas-Montanes J, Perro M. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nat. Available from. 2014;510(7503):157–161.
  • Xu M, Zhang Y, Wang M. TRPV1 and TRPA1 in lung inflammation and airway hyperresponsiveness induced by fine particulate matter (PM2.5). Oxid Med Cell Longev. 2019;2019(7450151):15.
  • Khare D, Godbole NM, Pawar SD. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur J Nutr. 2013;52(4):1405–1415.
  • Bertin S, Aoki-Nonaka Y, De Jong PR. The ion channel TRPV1 regulates the activation and proinflammatory properties of CD4+ T cells. Nat Immunol. 2014;15(11):1055–1063.
  • Rudd CE. Upstream-downstream: CD28 cosignaling pathways and T cell function. Immunity [Internet]. 1996. Available from: [cited 2019 Oct 3]. 4:527–534. https://linkinghub.elsevier.com/retrieve/pii/S1074761300804793.
  • Isakov N, Altman A. PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors. Front Immunol [Internet]. 2012. Available from: [cited 2019 Oct 3]. 3. http://journal.frontiersin.org/article/https://doi.org/10.3389/fimmu.2012.00273/abstract.
  • Bujak JK, Kosmala D, Szopa IM. Inflammation, cancer and immunit – implication of TRPV1 channel. Front Oncol. 2019;9: 1–16.
  • Helde-Frankling M, Björkhem-Bergman L. Vitamin D in pain management. Int J Mol Sci. 2017;18(10):1–9.
  • Sari A, Altun ZA, Karaman CA. Does vitamin D affect diabetic neuropathic pain and balance?. J Pain Res. 2020;13: 171–179.
  • Derry S, Asc R, Cole P. Topical capsaicin (high concentration) for chronic neuropathic pain in adults (review). Cochrane Database Syst Rev. 2019;13:1–67.
  • Valensi P, Le Devehat C, Richard JL. A multicenter, double-blind, safety study of QR-333 for the treatment of symptomatic diabetic peripheral neuropathy: a preliminary report. J Diabetes Complications. 2005;19(5):247–253.
  • Elokely K, Velisetty P, Delemotte L. Understanding TRPV1 activation by ligands: insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci U S A. 2016;113(2):E137–E145.
  • Wen H, Östman J, Bubb KJ. 20-Hydroxyeicosatetraenoic acid (20-HETE) is a novel activator of transient receptor potential vanilloid 1 (TRPV1) channel. J Biol Chem. 2012;287(17):13868–13876.
  • Hwang SW, Cho H, Kwak J. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A. 2000;97(11):6155–6160.
  • Chu CJ, Huang SM, De Petrocellis L. N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia. J Biol Chem. 2003;278(16):13633–13639.
  • Zhong B, Wang DH. N-oleoyldopamine, a novel endogenous capsaicin-like lipid, protects the heart against ischemia-reperfusion injury via activation of TRPV1. Am J Physiol – Hear Circ Physiol. 2008; 295.
  • Ross RA. Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol [Internet]. 2003; Available from: [cited. 2019 Oct 3; 140(5): 790–801.
  • Prescott ED. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science. 2003;300(5623):1284–1288.
  • Lukacs V, Thyagarajan B, Varnai P. Dual regulation of TRPV1 by phosphoinositides. J Neurosci. 2007;27(26):7070–7080.
  • Yu Y, Carter CRJ, Youssef N. Intracellular long-chain acyl CoAs activate TRPV1 channels. PLoS One. 2014; 9.
  • Green DP, Ruparel S, Roman L. Role of endogenous TRPV1 agonists in a postburn pain model of partial-thickness injury. Pain. 2013;154(11):2512–2520.
  • Spicarova D, Palecek J. The role of the TRPV1 endogenous agonist N-oleoyldopamine in modulation of nociceptive signaling at the spinal cord level. J Neurophysiol. 2009;102(1):234–243.
  • Movahed P, Bag J, Birnir B. Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J Biol Chem. 2005;280(46):38496–38504.
  • Zygmunt PM, Petersson J, Andersson DA. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999;400(6743):452–457.
  • Olah Z, Karai L, Iadarola MJ. Anandamide activates vanilloid receptor 1 (VR1) at acidic pH in dorsal root ganglia neurons and cells ectopically expressing VR1. J Biol Chem. 2001;276(33):31163–31170..
  • Szallasi A, Cortright DN, Blum CA. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov [Internet]. 2007. Available from: [cited 2019 Oct 3]. 6:357–372. http://www.nature.com/articles/nrd2280.
  • Numazaki M, Tominaga T, Toyooka H. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cε and identification of two target serine residues. J Biol Chem. 2002;277(16):13375–13378.
  • Bhave G, Hu HJ, Glauner KS. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc Natl Acad Sci U S A. 2003;100(21):12480–12485.
  • Studer M, McNaughton PA. Modulation of single-channel properties of TRPV1 by phosphorylation. J Physiol. 2010;588(19):3743–3756.
  • Bin PJ, Chen XZ, Berger UV. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999;274(32):22739–22746.
  • Woudenberg-Vrenken TE, Lameris AL, Weißgerber P. Functional TRPV6 channels are crucial for transepithelial Ca2+ absorption. Am J Physiol Gastrointest Liver Physiol. 2012;303(7):879–885.
  • Hoenderop JGJ, Kemp AWCM Van Der HA, Graaf SFJ VD. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. Biochemistry. 1999;274:8375–8378.
  • Cui M, Li Q, Johnson R. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice. J Bone Miner Res. 2012;27(10):2097–2107.
  • Hoenderop JGJ, Dardenne O, Van AM. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25hydroxyvitamin D3-1α-hydroxylase knockout mice. FASEB J. 2002;16(11):1398–1406.
  • Mkc VG, Hoenderop JGJ, Van Der Wijst J. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim Biophys Acta - Mol Cell Res [Internet]. Available from. 2017;1864(6):883–893.
  • Falcón D, Galeano-Otero I, Calderón-Sánchez E. TRP channels: current perspectives in the adverse cardiac remodeling. Front Physiol. 2019;10: 1–12.
  • Bölcskei K, Helyes Z, Á S. Investigation of the role of TRPV1 receptors in acute and chronic nociceptive processes using gene-deficient mice. Pain. 2005;117(3):368–376.
  • Caterina MJ. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–313.
  • Christoph T, Bahrenberg G, De Vry J. Investigation of TRPV1 loss-of-function phenotypes in transgenic shRNA expressing and knockout mice. Mol Cell Neurosci. 2008;37(3):579–589.
  • Guimaraes MZP, Jordt S-E. TRPA1: a sensory channel of many talents. In: Liedtke WB, Stefan H, editors. TRP ion channel funct sens transduct cell signal cascades. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. p. 151–162.
  • Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012;166(2):510–521.
  • Gouin O, L’Herondelle K, Lebonvallet N. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein Cell. 2017;8(9):644–661.
  • Reese RM, Dourado M, Anderson K. Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Sci Rep. 2020;10(1):1–11.
  • Moran MM, Szallasi A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol [Internet]. 2018; Available from: [cited 2019 Oct 3; 175(12): 2185–2203.
  • Murdaca G, Tonacci A, Negrini S. Emerging role of vitamin D in autoimmune diseases: an update on evidence and therapeutic implications. Autoimmun Rev. 2019;18(9):102350.
  • Huang SM, Bisogno T, Trevisani M. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A. 2002;99(12):8400–8405.
  • Yang F, Xiao X, Cheng W. Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat Chem Biol. 2015;11(7):518–524.
  • Correll CC, Phelps PT, Anthes JC. Cloning and pharmacological characterization of mouse TRPV1. Neurosci Lett. 2004;370(1):55–60.
  • Wahl P, Foged C, Tullin S. Iodo-resiniferatoxin, a new potent vanilloid receptor antagonist. Mol Pharmacol. 2001;59(1):9–15.
  • Abdelhamid RE, Kovács KJ, Honda CN. Resiniferatoxin (RTX) causes a uniquely protracted musculoskeletal hyperalgesia in mice by activation of TRPV1 receptors. J Pain. 2013;14(12):1–22.
  • Acs G, Lee J, Marquez VE. Resiniferatoxin‐amide and analogues as ligands for protein kinase C and vanilloid receptors and determination of their biological activities as vanilloids. J Neurochem. 1995;65(1):301–308.
  • Ohbuchi K, Mori Y, Ogawa K. Detailed analysis of the binding mode of vanilloids to transient receptor potential vanilloid type I (TRPV1) by a mutational and computational study. PLoS One. 2016;(9):11. https://doi.org/10.1371/journal.pone.0162543.
  • Wender PA, Jesudason CD, Hiroyuki Tamura N, et al. The first synthesis of a daphnane diterpene: the enantiocontrolled total synthesis of (+)-resiniferatoxin. J Am Chem Soc. 1997;119(52): 12976–12977.
  • Jerman JC, Brough SJ, Davis JB. Comparison of effects of anandamide at recombinant and endogenous rat vanilloid receptors. Br J Anaesth. 2002;89(6):882–887.
  • Vellani V, Mapplebeck S, Moriondo A. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J Physiol. 2001;534(3):813–825.
  • Muller C, Lynch DL, Hurst DP. A closer look at Anandamide interaction with TRPV1. Front Mol Biosci. 2020;7: 1–8.
  • Liu J, Wang L, Harvey-White J. A biosynthetic pathway for anandamide. Proc Natl Acad Sci U S A. 2006;103(36):13345–13350.
  • Premkumar LS, Qi ZH, Van Buren J. Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor. J Neurophysiol. 2004;91(3):1442–1449.
  • Hu SSJ, Bradshaw HB, Benton VM. The biosynthesis of N-arachidonoyl dopamine (NADA), a putative endocannabinoid and endovanilloid, via conjugation of arachidonic acid with dopamine. Prostaglandins Leukot Essent Fat Acids. 2009;81(4):291–301.
  • Almási R, É S, Bölcskei K. Actions of 3-methyl-N-oleoyldopamine, 4-methyl-N-oleoyldopamine and N-oleoylethanolamide on the rat TRPV1 receptor in vitro and in vivo. Life Sci. 2008;82(11–12):644–651.
  • Ahern GP. Activation of TRPV1 by the satiety factor oleoylethanolamide. J Biol Chem. 2003;278(33):30429–30434.
  • Fu J, Astarita G, Gaetani S. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J Biol Chem. 2007;282(2):1518–1528.
  • Petrosino S, Schiano Moriello A, Cerrato S. The anti-inflammatory mediator palmitoylethanolamide enhances the levels of 2-arachidonoyl-glycerol and potentiates its actions at TRPV1 cation channels. Br J Pharmacol. 2016;173(7):1154–1162.
  • Zygmunt PM, Ermund A, Movahed P. Monoacylglycerols activate TRPV1 – a link between phospholipase C and TRPV1. PLoS One. 2013;8(12):e81618.
  • Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta – Mol Cell Biol Lipids. 2015;1851:340–355.
  • Borgeat P, Hamberg M, Samuelsson B. Transformation of arachidonic acid and homo γ linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases. J Biol Chem. 1976;251:7816–7820.
  • Lukacs V, Yudin Y, Hammond GR. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons. J Neurosci. 2013;33(28):11451–11463.
  • Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem. 1998;67(1):481–507.
  • Rose G, Brandes R, Shapiro B. Palmitoyl-coenzyme A synthetase. Biochem J. 1973;131(2):199–209.
  • Corkey BE, Deeney JT, Yaney GC. The role of long-chain fatty acyl-CoA esters in β-cell signal transduction. J Nutr. 2000;130(2):299s–304s.