1,166
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Effects of JZTX-V on the wild type Kv4.3 Expressed in HEK293T and Molecular Determinants in the Voltage-sensing Domains of Kv4.3 Interacting with JZTX-V

, , , , &
Pages 72-83 | Received 20 Oct 2021, Accepted 01 Mar 2022, Published online: 04 Apr 2022

References

  • Armstrong CM, Hollingworth S. Na+ and K+ channels: history and structure. Biophys J. 2021;120(5):756–763.
  • González C, Baez-Nieto D, Valencia I, et al. K (+) channels: function-structural overview. Compr Physiol. 2012;2:2087–2149.
  • Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci. 2015;72(19):3677–3693.
  • Abbott GW. KCNQs: ligand- and Voltage-Gated Potassium Channels. Front Physiol. 2020;11:583–599.
  • Kim DM, Nimigean CM. Voltage-Gated Potassium Channels: a Structural Examination of Selectivity and Gating. Cold Spring Harb Perspect Biol. 2016;8(5):a029231.
  • Gutman GA, Chandy KG, Grissmer S, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57(4):473–508.
  • Birnbaum SG, Varga AW, Yuan LL, et al. Structure and function of Kv4-family transient potassium channels. Physiol Rev. 2004;84(3):803–833.
  • Matsuyoshi H, Takimoto K, Yunoki T, et al. Distinct cellular distributions of Kv4 pore-forming and auxiliary subunits in rat dorsal root ganglion neurons. Life Sci. 2012;91(7–8):258–563.
  • Huo R, Sheng Y, Guo WT, et al. The potential role of Kv4.3 K + channel in heart hypertrophy. Channels (Austin). 2014;8(3):203–209.
  • Nerbonne JM. Molecular basis of functional voltage-gated K + channel diversity in the mammalian myocardium. J Physiol. 2000;525(2):285–298.
  • Pollini L, Galosi S, Tolve M, et al. KCND3-Related Neurological Disorders: from Old to Emerging Clinical Phenotypes. Int J Mol Sci. 2020;21(16):5802–5817.
  • Langenegger N, Nentwig W, Kuhn-Nentwig L. Spider Venom: components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins (Basel). 2019;11(10):611–655.
  • Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon. 2019;158:109–126.
  • Akef HM. Anticancer, antimicrobial, and analgesic activities of spider venoms. Toxicol Res (Camb). 2018;7(3):381–395.
  • Ranganathan R, Lewis JH, MacKinnon R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron. 1996;16(1):131–139.
  • Miller C. The charybdotoxin family of K+ channel-blocking peptides. Neuron. 1995;15(1):5–10.
  • Swartz KJ. Tarantula toxins interacting with voltage sensors in potassium channels. Toxicon. 2007;49(2):213–230.
  • Zeng X, Deng M, Lin Y, et al. Isolation and characterization of Jingzhaotoxin-V, a novel neurotoxin from the venom of the spider Chilobrachys jingzhao. Toxicon. 2007;49(3):388–399.
  • Zhang Y, Luo J, He J, et al. JZTX-V Targets the Voltage Sensor in Kv4.2 to Inhibit Ito Potassium Channels in Cardiomyocytes. Front Pharmacol. 2019;10:357–367.
  • Cai LJ, Xu DH, Luo J, et al. Inhibition of Jingzhaotoxin-V on Kv4.3 channel. Sheng Li Xue Bao. 2010;62(3):255–260.
  • Diochot S, Drici MD, Moinier D, et al. Effects of phrixotoxins on the Kv4 family of potassium channels and implications for the role of I to 1 in cardiac electrogenesis. Br J Pharmacol. 1999;126(1):251–263.
  • DeSimone CV, Lu Y, Bondarenko VE, et al. S3b Amino Acid Substitutions and Ancillary Subunits Alter the Affinity of Heteropoda venatoria Toxin 2 for Kv4.3. Mol Pharmacol. 2009;76(1):125–133.
  • Zeng XZ, Deng MC, Sun ZH, et al. Synthesis, Refolding and Characterization of JZTX-Vand Its Effect on Potassium Channels. Chinese Journal of Biochemistry and Molecular Biology. 2008;24:463–468.
  • Wang M, Diao J, Li J, et al. JZTX-IV, a unique acidic sodium channel toxin isolated from the spider Chilobrachys jingzhao. Toxicon. 2008;52(8):871–880.
  • Rola R, Witkowski G, Szulczyk PJ. Voltage-dependent K+ currents in rat cardiac dorsal root ganglion neurons. Neuroscience. 2003;119(1):181–191.
  • Xie C, Li T, Xu L, et al. Kv1.3 potassium channel-blocking toxin Ctri9577, novel gating modifier of Kv4.3 potassium channel from the scorpion toxin family. Biochem Biophys Res Commun. 2014;444(3):406–410.
  • Swartz KJ, MacKinnon R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron. 1997;18(4):665–673.
  • Sanguinetti MC, Johnson JH, Hammerland LG, et al. Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol Pharmacol. 1997;51(3):491–498.
  • Catterall WA, Cestèle S, Yarov-Yarovoy V, et al. Voltage-gated ion channels and gating modifier toxins. Toxicon. 2007;49(2):124–141.
  • Lau CHY, King GF, Mobli M. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels. Sci Rep. 2016;6(1):34333.
  • Jiang Y, Ruta V, Chen J, et al. The principle of gating charge movement in a voltage-dependent K+ channel. Nature. 2003;423(6935):42–48.
  • Börjesson SI, Elinder F. Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Cell Biochem Biophys. 2008;52(3):149–174.
  • Wee CL, Gavaghan D, Sansom MS. Interactions between a voltage sensor and a toxin via multiscale simulations. Biophys J. 2010;98(8):1558–1565.
  • Lee SY, MacKinnon R. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature. 2004;430(6996):232–235.
  • Shiau YS, Huang PT, Liou HH, et al. Structural basis of binding and inhibition of novel tarantula toxins in mammalian voltage-dependent potassium channels. Chem Res Toxicol. 2003;16(10):1217–1225.
  • Li-SmerinY, SwartzKJ. Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca 2+ and K + channels. Proc Natl Acad Sci USA. 1998;95(15):8585–8589.