1,476
Views
0
CrossRef citations to date
0
Altmetric
Review

Pleiotropic Ankyrins: Scaffolds for Ion Channels and Transporters

& ORCID Icon
Pages 216-229 | Received 15 Jul 2022, Accepted 26 Aug 2022, Published online: 08 Sep 2022

References

  • Bennett V, Lorenzo DN. An adaptable spectrin/ankyrin-based mechanism for long-range organization of plasma membranes in vertebrate tissues. Curr Top Membr. 2016;77:143–184.
  • Chang K-J, Zollinger DR, Susuki K, et al. Glial ankyrins facilitate paranodal axoglial junction assembly. Nat Neurosci. 2014;17(12):1673–1681.
  • Bennett V, Healy J. Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol Med. 2008;14(1):28–36.
  • Stevens SR, Rasband MN. Ankyrins and neurological disease. Curr Opin Neurobiol. 2021;69:51–57.
  • Chagula DB, Rechciński T, Rudnicka K, et al. Ankyrins in human health and disease - an update of recent experimental findings. Arch Med Sci. 2020;16(4):715–726.
  • Smith S, Curran J, Hund TJ, et al. Defects in cytoskeletal signaling pathways, arrhythmia, and sudden cardiac death. Front Physiol. 2012;3:122.
  • Lux SE, Tse WT, Menninger JC, et al. Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Nature. 1990;345(6277):736–739.
  • Ho TS-Y, Zollinger DR, Chang KJ, et al. A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. Nat Neurosci. 2014;17(12):1664–1672.
  • Zhang C, Joshi A, Liu Y, et al. Ankyrin-dependent Na+ channel clustering prevents neuromuscular synapse fatigue. Curr Biol. 2021;31(17):3810–3819.e4.
  • Stevens SR, Longley CM, Ogawa Y, et al. Ankyrin-R regulates fast-spiking interneuron excitability through perineuronal nets and Kv3.1b K channels. eLife. 2021;10. doi:10.7554/eLife.66491
  • Stevens SR, van der Heijden ME, Ogawa Y, et al. Ankyrin-R links Kv3.3 to the spectrin cytoskeleton and is required for purkinje neuron survival. J Neurosci. 2022;42(1):2–15.
  • Becchetti A, Munaron L, Arcangeli A. The role of ion channels and transporters in cell proliferation and cancer. Front Physiol. 2013;4. DOI:10.3389/fphys.2013.00312
  • Rasband. Ion channels and excitable cells. Nat Educ. 2010;3:41.
  • Hille B. Ionic channels of excitable membranes. Sunderland, Massachusetts, USA: Sinauer; 2001.
  • Lai HC, Jan LY. The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci. 2006;7(7):548–562.
  • Subramanyam P, Colecraft HM. Ion channel engineering: perspectives and strategies. J Mol Biol. 2015;427(1):190–204.
  • Rasband MN, Peles E. Mechanisms of node of Ranvier assembly. Nat Rev Neurosci. 2021;22(1):7–20.
  • Leterrier C. The axon initial segment: an updated viewpoint. J Neurosci. 2018;38(9):2135–2145.
  • Jenkins PM, Kim N, Jones SL, et al. Giant ankyrin-G: a critical innovation in vertebrate evolution of fast and integrated neuronal signaling. Proc Natl Acad Sci U S A. 2015;112(4):957–964.
  • Pan Z, Kao T, Horvath Z, et al. A common Ankyrin-G-based mechanism retains KCNQ and Na V channels at electrically active domains of the axon. J Neurosci. 2006;26(10):2599–2613.
  • Davis JQ, Lambert S, Bennett V. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments. J Cell Biol. 1996;135(5):1355–1367.
  • Ayalon G, Hostettler JD, Hoffman J, et al. Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury. J Biol Chem. 2011;286(9):7370–7378.
  • Ayalon G, Davis JQ, Scotland PB, et al. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell. 2008;135(7):1189–1200.
  • Kordeli E, Ludosky MA, Deprette C, et al. AnkyrinG is associated with the postsynaptic membrane and the sarcoplasmic reticulum in the skeletal muscle fiber. J Cell Sci. 1998;111(Pt 15):2197–2207.
  • Mohler PJ, Bennett V. Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Curr Opin Cardiol. 2005;20(3):189–193.
  • Prieto ML, Wollmuth LP. Gating modes in AMPA receptors. J Neurosci. 2010;30(12):4449–4459.
  • Smith KR, Kopeikina K, Fawcett-Patel J, et al. Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron. 2014;84(2):399–415.
  • Kizhatil K, Baker SA, Arshavsky VY, et al. Ankyrin-G promotes cyclic nucleotide-gated channel transport to rod photoreceptor sensory cilia. Science. 2009;323(5921):1614–1617.
  • Gaudet R. A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst. 2008;4(5):372–379.
  • Kanda H, Ling J, Tonomura S, et al. TREK-1 and TRAAK are principal K+ channels at the nodes of Ranvier for rapid action potential conduction on mammalian myelinated afferent nerves. Neuron. 2019;104(5):960–971.e7.
  • Brohawn SG, Wang W, Handler A, et al. The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier. Elife. 2019;8. doi:10.7554/eLife.50403
  • Skogestad J, Aronsen JM, Tovsrud N, et al. Coupling of the Na+/K+-ATPase to Ankyrin B controls Na+/Ca2+ exchanger activity in cardiomyocytes. Cardiovasc Res. 2020;116(1):78–90.
  • Camors E, Mohler PJ, Bers DM, et al. Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity. J Mol Cell Cardiol. 2012;52(6):1240–1248.
  • Kobayashi S, Morgans CW, Casey JR, et al. AE3 anion exchanger isoforms in the vertebrate retina: developmental regulation and differential expression in neurons and glia. J Neurosci. 1994;14(10):6266–6279.
  • Morgans CW, Kopito RR. Association of the brain anion exchanger, AE3, with the repeat domain of ankyrin. J Cell Sci. 1993;105(Pt 4):1137–1142.
  • Genetet S, Ripoche P, Le Van Kim C, et al. Evidence of a structural and functional ammonium transporter RhBG·anion exchanger 1·ankyrin-G complex in kidney epithelial cells. J Biol Chem. 2015;290(11):6925–6936.
  • Bourguignon LY, Chu A, Jin H, et al. Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells. J Biol Chem. 1995;270(30):17917–17922.
  • Mohler PJ, Davis JQ, Davis LH, et al. Inositol 1,4,5-trisphosphate receptor localization and stability in neonatal cardiomyocytes requires interaction with Ankyrin-B*. J Biol Chem. 2004;279(13):12980–12987.
  • Klemens CA, Edinger RS, Kightlinger L, et al. Ankyrin G expression regulates apical delivery of the Epithelial Sodium Channel (ENaC). J Biol Chem. 2017;292(1):375–385.
  • Kizhatil K, Sandhu NK, Peachey NS, et al. Ankyrin-B is required for coordinated expression of beta-2-spectrin, the Na/K-ATPase and the Na/Ca exchanger in the inner segment of rod photoreceptors. Exp Eye Res. 2009;88(1):57–64.
  • Yang H-Q, Pérez-Hernández M, Sanchez-Alonso J, et al. Ankyrin-G mediates targeting of both Na+ and KATP channels to the rat cardiac intercalated disc. Elife. 2020;9. doi:10.7554/eLife.52373
  • Smith KR, Penzes P. Ankyrins: roles in synaptic biology and pathology. Mol Cell Neurosci. 2018;91:131–139.
  • Chater TE, Goda Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci. 2014;8:401.
  • Joho RH, Hurlock EC. The role of Kv3-type potassium channels in cerebellar physiology and behavior. Cerebellum. 2009;8(3):323–333.
  • Kline CF, Scott J, Curran J, et al. Ankyrin-B regulates Cav2.1 and Cav2.2 channel expression and targeting. J Biol Chem. 2014;289(8):5285–5295.
  • Yang R, Walder-Christensen KK, Kim N, et al. ANK2 autism mutation targeting giant ankyrin-B promotes axon branching and ectopic connectivity. Proc Natl Acad Sci U S A. 2019;116(30):15262–15271.
  • Huang CY-M, Rasband MN. Axon initial segments: structure, function, and disease. Ann N Y Acad Sci. 2018;1420(1):46–61.
  • Kole MHP, Ilschner SU, Kampa BM, et al. Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci. 2008;11(2):178–186.
  • Jenkins SM, Bennett V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol. 2001;155(5):739–746.
  • Zhou D, Lambert S, Malen PL, et al. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol. 1998;143(5):1295–1304.
  • Poliak S, Peles E. The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci. 2003;4(12):968–980.
  • Rios JC, Rubin M, Martin MS, et al. Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J Neurosci. 2003;23(18):7001–7011.
  • Duflocq A, Le Bras B, Bullier E, et al. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol Cell Neurosci. 2008;39(2):180–192.
  • Boiko T, Van Wart A, Caldwell JH, et al. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci. 2003;23(6):2306–2313.
  • Garrido JJ, Giraud P, Carlier E, et al. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science. 2003;300(5628):2091–2094.
  • Lemaillet G, Walker B, Lambert S. Identification of a conserved ankyrin-binding motif in the family of sodium channel alpha subunits. J Biol Chem. 2003;278(30):27333–27339.
  • Gasser A, Ho TS-Y, Cheng X, et al. An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. J Neurosci. 2012;32(21):7232–7243.
  • Battefeld A, Tran BT, Gavrilis J, et al. Heteromeric Kv7.2/7.3 channels differentially regulate action potential initiation and conduction in neocortical myelinated axons. J Neurosci. 2014;34(10):3719–3732.
  • Xu M, Cooper EC. An ankyrin-G N-terminal gate and protein kinase CK2 dually regulate binding of voltage-gated sodium and KCNQ2/3 potassium channels. J Biol Chem. 2015;290(27):16619–16632.
  • Bréchet A, Fache MP, Brachet A, et al. Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G. J Cell Biol. 2008;183(6):1101–1114.
  • Devaux J, Alcaraz G, Grinspan J, et al. Kv3.1b is a novel component of CNS nodes. J Neurosci. 2003;23(11):4509–4518.
  • Xu M, Cao R, Xiao R, et al. The axon-dendrite targeting of Kv3 (Shaw) channels is determined by a targeting motif that associates with the T1 domain and ankyrin G. J Neurosci. 2007;27(51):14158–14170.
  • Ogawa Y, Horresh I, Trimmer JS, et al. Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2. J Neurosci. 2008;28(22):5731–5739.
  • Saha R, Knapp S, Chakraborty D, et al. GABAergic synapses at the axon initial segment of basolateral amygdala projection neurons modulate fear extinction. Neuropsychopharmacology. 2017;42(2):473–484.
  • Christie SB, De Blas AL. GABAergic and glutamatergic axons innervate the axon initial segment and organize GABA(A) receptor clusters of cultured hippocampal pyramidal cells. J Comp Neurol. 2003;456(4):361–374.
  • Li L, Xiong W-C, Mei L. Neuromuscular junction formation, aging, and disorders. Annu Rev Physiol. 2018;80(1):159–188.
  • Burns ME, Arshavsky VY. Beyond counting photons: trials and trends in vertebrate visual transduction. Neuron. 2005;48(3):387–401.
  • Bennett V, Stenbuck PJ. Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J Biol Chem. 1979;254(7):2533–2541.
  • Nicolas V, Le Van Kim C, Gane P, et al. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J Biol Chem. 2003;278(28):25526–25533.
  • Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev. 2001;81(3):1353–1392.
  • Bennett V, Stenbuck PJ. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979;280(5722):468–473.
  • Lambert S, Bennett V. Postmitotic expression of ankyrinR and beta R-spectrin in discrete neuronal populations of the rat brain. J Neurosci. 1993;13(9):3725–3735.
  • Eber S, Lux SE. Hereditary spherocytosis–defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin Hematol. 2004;41(2):118–141.
  • Hsu K. Exploring the potential roles of band 3 and aquaporin-1 in blood CO2 transport-inspired by comparative studies of glycophorin B-A-B Hybrid Protein GP.Mur. Front Physiol. 2018;9:733.
  • Grey JL, Kodippili GC, Simon K, et al. Identification of contact sites between ankyrin and band 3 in the human erythrocyte membrane. Biochemistry. 2012;51(34):6838–6846.
  • Chang SH, Low PS. Identification of a critical ankyrin-binding loop on the cytoplasmic domain of erythrocyte membrane band 3 by crystal structure analysis and site-directed mutagenesis. J Biol Chem. 2003;278(9):6879–6884.
  • Van Kim CL, Colin Y, Cartron J-P. Rh proteins: key structural and functional components of the red cell membrane. Blood Rev. 2006;20(2):93–110.
  • Stankewich MC, Moeckel GW, Ji L, et al. Isoforms of spectrin and ankyrin reflect the functional topography of the mouse kidney. PLoS One. 2016;11(1):e0142687.
  • Sohet F, Colin Y, Genetet S, et al. Phosphorylation and ankyrin-G binding of the C-terminal domain regulate targeting and function of the ammonium transporter RhBG. J Biol Chem. 2008;283(39):26557–26567.
  • Lopez C, Métral S, Eladari D, et al. The ammonium transporter RhBG: requirement of a tyrosine-based signal and ankyrin-G for basolateral targeting and membrane Anchorage in polarized kidney epithelial cells. J Biol Chem. 2005;280(9):8221–8228.
  • Su Y, Al-Lamki RS, Blake-Palmer KG, et al. Physical and functional links between anion exchanger-1 and sodium pump. J Am Soc Nephrol. 2015;26(2):400–409.
  • Thevananther S, Kolli AH, Devarajan P. Identification of a novel ankyrin isoform (AnkG190) in kidney and lung that associates with the plasma membrane and binds α-Na,K-ATPase*. J Biol Chem. 1998;273(37):23952–23958.
  • Smith PR, Saccomani G, Joe EH, et al. Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal epithelial cells. Proc Natl Acad Sci U S A. 1991;88(16):6971–6975.
  • Berman JM, Mironova E, Stockand J, et al. CK2 phosphorylation of ENaC directs ankyrin‐3 activity. FASEB J. 2019;33(S1). DOI:10.1096/fasebj.2019.33.1_supplement.lb531
  • Kizhatil K, Bennett V. Lateral membrane biogenesis in human bronchial epithelial cells requires 190-kDa Ankyrin-G. J Biol Chem. 2004;279(16):16706–16714.
  • Cunha SR, Mohler PJ. Ankyrin-based cellular pathways for cardiac ion channel and transporter targeting and regulation. Semin Cell Dev Biol. 2011;22(2):166–170.
  • Vandecaetsbeek I, Raeymaekers L, Wuytack F, et al. Factors controlling the activity of the SERCA2a pump in the normal and failing heart. Biofactors. 2009;35(6):484–499.
  • Sucharski HC, Dudley EK, Keith CBR, et al. mechanisms and alterations of cardiac ion channels leading to disease: role of Ankyrin-B in cardiac function. Biomolecules. 2020;10(2):211.
  • Bourguignon LY, Jin H. Identification of the ankyrin-binding domain of the mouse T-lymphoma cell inositol 1,4,5-trisphosphate (IP3) receptor and its role in the regulation of IP3-mediated internal Ca2+ release. J Biol Chem. 1995;270(13):7257–7260.
  • Tuvia S, Buhusi M, Davis L, et al. Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins. J Cell Biol. 1999;147(5):995–1008.
  • Shy D, Gillet L, Abriel H. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model. Biochim Biophys Acta. 2013;1833(4):886–894.
  • Li J, Kline CF, Hund TJ, et al. Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J Biol Chem. 2010;285(37):28723–28730.
  • Mohler PJ, Tuvia S, Buhusi M, et al. Na v 1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Na v 1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci U S A. 2004;101(50):17533–17538.
  • Liu C-H, Seo R, Ho TS-Y, et al. β spectrin-dependent and domain specific mechanisms for Na+ channel clustering. Elife. 2020;9. doi:10.7554/eLife.56629
  • Wood SJ, Slater CR. β-spectrin is colocalized with both voltage-gated sodium channels and AnkyrinG at the adult rat neuromuscular junction. J Cell Biol. 1998;140(3):675–684.
  • Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci. 2008;28(53):14329–14340.
  • Moldovan M, Rosberg MR, Alvarez S, et al. Aging-associated changes in motor axon voltage-gated Na(+) channel function in mice. Neurobiol Aging. 2016;39:128–139.
  • Bennett V. The molecular basis for membrane - cytoskeleton association in human erythrocytes. J Cell Biochem. 1982;18(1):49–65.
  • Michaely P, Bennett V. Mechanism for binding site diversity on ankyrin: COMPARISON OF BINDING SITES ON ANKYRIN FOR NEUROFASCIN AND THE Cl−/HCO3− ANION EXCHANGER (*). J Biol Chem. 1995;270(52):31298–31302.
  • Nicolas V, Mouro-Chanteloup I, Lopez C, et al. Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells. Transfus Clin Biol. 2006;13(1–2):23–28.
  • Chu L, Greenstein JL, Winslow RL. Na+ microdomains and Sparks: role in cardiac excitation-contraction coupling and arrhythmias in ankyrin-B deficiency. J Mol Cell Cardiol. 2019;128:145–157.
  • Wolf RM, Glynn P, Hashemi S, et al. Atrial fibrillation and sinus node dysfunction in human ankyrin-B syndrome: a computational analysis. Am J Physiol Heart Circ Physiol. 2013;304(9):H1253–66.
  • Curran J, Mohler PJ. Coordinating electrical activity of the heart: ankyrin polypeptides in human cardiac disease. Expert Opin Ther Targets. 2011;15(7):789–801.
  • Lowe JS, Palygin O, Bhasin N, et al. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J Cell Biol. 2008;180(1):173–186.
  • Nelson WJ, Hammerton RW. A membrane-cytoskeletal complex containing Na+,K+-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J Cell Biol. 1989;108(3):893–902.
  • Created with Biorender.com. (2022).