711
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Impact of heavy metal toxicity and constructed wetland system as a tool in remediation

&
Pages 102-110 | Received 12 Dec 2013, Accepted 11 Oct 2014, Published online: 02 Dec 2015

References

  • Bennet LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon Smits EAH. Analysis of transgenic Indian mustard plants for phytoremediation of metals contaminated mine tailings. J Environ Qual. 2003;32:432–440.
  • Nriagu JO. Global inventory of natural and anthropogenic emission of trace metals to the atmosphere. Nature. 1979;279:409–411.
  • US Environmental Protection Agency. Introduction to Phytoremediation. EPA 600/R-99/107. Cincinnati, OH: US Environmental Protection Agency Office of Research and Development; 2000.
  • Kabata Pendias A, Pendias H. Trace Elements in Soils and Plants. London: CRC Press; 2001.
  • Arthur EL, Rice PJ, Anderson TA, Baladi SM, Henderson KLD, Coats JR. Phytoremediaton—an overview. Crit Rev Plant Sci. 2005;24:109–122.
  • Prasad MNV. Phytoremediation of metal-polluted ecosystems: Hope for comercialisation. Russ J Plant Physiol. 2003;50:764–780.
  • Suresh B, Ravishankar GA. Phytoremediation—a novel and promising approach for environmental clean-up. Crit Rev Biotechnol. 2004;24:97–124.
  • Mc Grath SP, Zhao FG. Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol J. 2003;14:277–282.
  • Wu HB, Tang SR. Using elevated CO2 to increase the biomass of Sorghum vulgare × Sorghum vulgare var sudanense hybrid and Trifolium prantense L. and to trigger hyperaccumulation of cesium. J Hazard Mater. 2009;170:861–870.
  • US Environmental Protection Agency. A Citizens' Guide to Phytoremediation. EPA 542-F-01-002. Washington, D.C.: US Environmental Protection Agency Office of Solid Waste and Emergency Response; 2001.
  • Lorestani B, Cheraghi M, Yousefi N. Phytoremediation potential of native plants growing on heavy metal contaminated soil of copper mine in Iran. World Acad Sci Eng Technol. 2011;77:377–382.
  • Mendez MO, Maier RM. Phytostablisation of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect. 2008;116:278–283.
  • Lone MI, He Z-l, Stoffella PJ, Yang X-e. Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B. 2008;9:210–220.
  • Dembitsky V. Natural occurrence of arseno compounds in plants, lichens, fungi, algal species and microorganisms. Plant Sci. 2003;165:1177–1192.
  • Singh D, Gupta R, Tiwari A. Phytoremediation of lead from wastewater using aquatic plants. Int J Biomed Res. 2011;7:411–421.
  • Renoux AY, Rocheleau S, Sarrazin M, Sunahara GI, Blais JF. Assessment of a sewage sludge treatment on cadmium, copper and zinc bioavailability in barley, ryegrass and earthworms. Environ Pollut. 2007;145:41–50.
  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H. Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual. 2002;31:1893–1900.
  • Warmate AG, Ideriah TJK, Tamunobereton ARI, Udonam Inyang UE, Ibaraye T. Concentrations of heavy metals in soil and water receiving used engine oil in port Harcourt, Nigeria. J Ecol Nat Environ. 2011;3:54–57.
  • Singh R, Singh DP, Narendra K, Bhargava SK, Barman SC. Accumulation and translocation of heavy metals in soil and translocation of heavy metals in soil and plants from fly ash contaminated area. J Environ Biol. 2010;31:421–430.
  • Sorme L, Lagerkvist R. Sources of heavy metals in urban wastewater in Stockholm. Sci Total Environ. 2002;298:131–145.
  • Rai PK. Waste management through biomass of Azolla pinnata: An ecosustainable approach. Ambio. 2007;36:426–428.
  • Abo El Ella SM, Honsny MM, Bakry MF. Utilising fish and aquatic weeds infestation as bioindicators for water pollution in Lake Nubia, Sudan. Egypt J Aquat Biol Fish. 2005;9:63–84.
  • Naziri A, Malik RN, Ajaib M, Khan N, Siddiqui MF. Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak J Bot. 2011;43:1925–1933.
  • Reddy KR, Danda S, Yukselen-Aksoy Y, Al-Hamdan AZ. Sequestration of heavy metals in soils from two polluted industrial sites: Implications for remediation. Land Contam Reclam. 2010;18:13–23.
  • Gzik A, Kuehling M, Schneider I, Tschochner B. Heavy metal contamination of soils in a mining area in South Africa and its impact on some biotic systems. J Soil Sediments. 2003;3:29–34.
  • Kachenko AG, Singh B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut. 2006;164:101–123.
  • Manohar S, Jadia CD, Fulekar MH. Impact of ganesh idol immersion on water quality. Indian J Environ Prot. 2006;23:216–220.
  • Kingman A, Albers JW, Arezzo JC, Garabrant DH, Michalek JE. Amalgam exposure and neurological function. Neurotoxicology. 2005;26:241–55.
  • US Agency for Toxic Substances and Disease Registry (ATSDR). Lead Toxicological Profiles. Atlanta, GA: Centers for Disease Control and Prevention; 1999. PB/99/166704.
  • Rowden AK. , Holstege CP, Huff JS, O Malley RN. Pathophysiology and etiology of lead toxicity. eMedicine from WebMD. http://emedicine.medscape.com/article/2060369-overview. Updated September 30, 2011.
  • Chang TC, You SJ, Yu BS, Chen CM, Chiu YC. Treating high-mercury-containing lamps using full-scale thermal desorption technology. J Hazard Mater. 2009;162:967–972.
  • Davidson, PW, Myers GJ, Weiss B. Mercury exposure and child development outcomes. Pediatrics. 2004;113:1023–1029.
  • Guerra F, Trevizam AR, Muraoka T, Marcante NS, Canniatti Brazaca SG. Heavy metals in vegetables and potential risk for human health. Sci Agric. 2012;69:54–60. doi: 10.1590/s0103-90162012000100008.
  • Knasmuller S, Gottmann E, Steinkellner H, et al. Detection of genotoxic effects of heavy metal contaminated soils with plant bioassay. Mutat Res. 1998;420:37–48.
  • Jarup L., Hellstrom L, Alfven T, et al. Low level exposure to cadmium and early kidney damage: The OSCAR study. Occup Environ Med. 2000;57:668–672.
  • Jarup L. Hazards of heavy metal contamination. Be Med Bull. 2003;68:167–182.
  • Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium. Atlanta GA: US Department of Health and Human Services Public Health Service; 2012.
  • Satarug S, MR Haswell-Elkins, MR Moore. Safe levels of cadmium intake to prevent renal toxicity in human subjects. Br J Nutr. 2000;84:791–802.
  • Puschenreiter M, Horak O, Friesel W, Hartl W. Low- cost agricultural measures to reduce heavy metal transfer into the food chain—a review. Plant Soil Environ. 2005;51;1–11.
  • Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profile for Chromium. Atlanta, GA: US Department of Health and Human Services Public Health Service; 1998.
  • US Environmental Protection Agency. Toxicological Review of Hexavalent Chromium. Washington, DC: National Center for Environmental Assessment, Office of Research and Development; 1998.
  • World Health Organization (WHO). Chromium. Environmental Health Criteria 61. Geneva, Switzerland: World Health Organization; 1988.
  • Cempel M, Nikel G. Nickel: A review of its sources and environmental toxicology. Polish J Environ Stud. 2006;15:375–382.
  • International Agency for Research on Cancer (IARC). IARC Monograph on the Evaluation of Carcinogenic Risks to Humans. No. 49. Lyon, France: International Agency for Research on Cancer; 1990:138–411.
  • Cervantes C, Campos-García J, Devars S, et al. Interaction of chromium with microgenesis and plants. FEMS Microbiol Rev. 2001;25:335–347.
  • Andresen E, Kupper H. Cadmium toxicity in plants. Metal Ions Life Sci. 2013;11:395–413.
  • Benavides MP, Gallego SM, Tomaro ML. Cadmium toxicity in plants. Braz J Plant Physiol. 2005;17:21–34. doi: 10.1590/S1677-04202005000100003.
  • Radha S and Dhankhar R. Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia. 2011;66:195–204.
  • Sarita S, Ankita B, Amrita M, Singh KP. Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology. 2009;18:555–566.
  • De B, Mukherjee AK. Mercury induced metabolic changes in seedlings and cultured cells of tomato. Geobios. 1998;23:83–88.
  • Dominguez Solis JR, Lopez Martin MC, Ager MC, Ynsa MD, Romero LC, Gotor C. Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J. 2004;2:469–476.
  • Freeman JL, Persans MW, Nieman K, et al. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell. 2004;16:2176–2191.
  • Harper FA, Baker AJM, Balkwill K, Smith JAC. Nickel uptake, translocation and hyperaccumulation in Berkheya coddii. In: Abstracts of the Third International Conference on Serpentine Ecology; Kruger National Park, South Africa. 1999.
  • Roy SB, Bera AK. Individual and combined effect of mercury and manganese on phenol and proline content in leaf and stem of mungbean seedlings. J Environ Biol. 2003;24:78–81.
  • El-Shintinawy F, El-Ansary A. Differential effects of Cd2+ and Ni2+ on aminoacid metabolism in soybean seedlings. Biol Plant. 2000;43:79–84.
  • Schutzendubel A, Polle A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot. 2002;53:1351–1365.
  • Monferran MV, Sanchez Agudo JA, Pignata ML, Wunderlin DA. Copper induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environ Pollut. 2009;157:2570–2576.
  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol. 2010;101:3025–3032.
  • Van Huysen T, Terry N, Pilon-Smits EAH. Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathion-ine-γ-synthase. Int J Phytoremediat. 2004;6:1–8.
  • Abedin MJ, Feldmann J, Meharg AA. Uptake kinetics of arsenic species in rice plants. Plant Physiol. 2002;128:1120–1128.
  • Kavulikova J, Kadukova J, Ivanova D. The evaluation of heavy metal toxicity in plants using the biochemical tests. Nova Biotechnol Chim. 2013;11:101–110. doi: 10.2478/v10296-012-0011-2.
  • Kumar G, Kesarwani S. Cytotoxiceffect of mercuric chloride in root meristem of lens culinaris medic. Int J Mendel. 2004;21:41–42.
  • Nedjimi B, Daoud Y. Cadmium accumulation in Atriplex halimus subsp schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol Distrib Funct Ecol Plants. 2009;204:316–324.
  • Benzarti S, Mohri S, Ono Y. Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: Lettuce, radish, and alfalfa. Environ Toxicol. 2008;23:607–616. doi: 10.1002/tox.20405.
  • Shaw BP, Sahu SK, Mishra RK. Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV, ed. Heavy Metal Stress in Plants: From Biomolecules to Ecosystem. New Delhi, India: Narosa Publishing; Springer; 2004:96–97.
  • Wong MH, Lan CY, Gao L, Chen HM. Current approaches to managing and remediating metal contaminated soils in China. In: Proceedings of the 5th Int Conf Biogeochemistry of Trace Elements; July 11–15, 1999; Vienna, Austria. 232–234.
  • Tyler G, Pahlsson AMB, Bengtsson G, Baath E, Tranvik L. Heavy metal ecology of terrestrial plants, microorganisms and invertebrates: a review. Water Air Soil Pollut. 1989;47:189–215.
  • Giller KE, Witter E, McGrath SP. Toxicity to heavy metals to micro organism and microbial processes in agricultural soils: a review. Soil Biol Biochem. 1998;30:1389–1414.
  • Babich H, Schiffenbauer M, Stotzky G. Comparative toxicity of trivalent and hexavalent chromium to fungi. Bull Environ Contam Toxicol. 1982;28:193–202.
  • Farkas A, Salanki J, Specziar A, Varanka I. Metal pollution as health indicator of lake ecosystems. Int J Occup Med Environ Health. 2001;14:163–170.
  • Vargha B, Otvos E, Tuba Z. Investigations on ecological effects of heavy metal pollution in Hungary by moss-dwelling water bears (Tardigrada) as bioindicators. Ann Agric Environ Med. 2002;9:141–146.
  • Zhuang P, Li ZA, McBride MB, Zou B, Wang G. Health risk assessment for consumption of fish originating from ponds near Dabaoshan mine, South China. Environ Sci Pollut Res Int. 2013; 5844–5854. doi: 10,1007/s 11356-013-1606-0.
  • Bryan GW, Langston WJ. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut. 1992;76:89–131.
  • Schuurmann G, Markert B. Ecological fundamentals, chemical exposure and biological effects. In: Ecotoxicology. New York; John Wiley & Sons and Spectrum Akademischer Verlag; 1998: 900.
  • Chen M, Tang Y, Li X, Yu Z. Studies on the heavy metals removal efficiencies of constructed wetlands with different substrates. J Water Resour Prot. 2009;1:1–57.
  • Yeh TY, Chou CC, Pan CT. Heavy metal removal with pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination. 2009;249:368–373.
  • Oliveria RS, Dodd JC, Castro PML. The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialized region of northern Portugal. Mycorrhiza. 2001;10:241–247.
  • Buddhawong S, Kuschk P, Mattusch J, Wiessner A, Stottmeister U. Removal of arsenic and zinc using different laboratory model wetland systems. Eng Life Sci. 2005;5:247–252.
  • Hafeznezami S, Kim J, Redman J. Evaluating removal efficiency of heavy metals in constructed wetlands. J Environ Eng. 2012;138:475–482.
  • LeDuc DL, Terry N. Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol. 2005;32:514–520.
  • Allende KL, Fletcher TD, Sun G. Enhancing the removal of arsenic, boron and heavy metals in subsurface flow constructed wetlands using different supporting media. Water Sci Technol. 2011;63:2612–2618.
  • Stottmeister U, Buddhawong S, Kuschk P, Weissner A, Mattusch J. Constructed wetlands and their performance for treatment of water contaminated with arsenic and heavy metals. Soil Water Pollut Monit Prot Remediat. 2006;3:417–432.
  • Nyquist J, Gregor MA. Field study of constructed wetlands for preventing and treating acid mine drainage. Ecol Eng. 2009;35:630–642.
  • Birch GF, Matthai C, Fazeli MS, Suh J. Efficiency of a constructed wetland in removing contaminants from stormwater. Wetland. 2004;24:459–66.
  • Lee BH, Scholz M. What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff?. Ecol Eng. 2007;29:87–95.
  • Sundaravadivel M, Vigneshwaran S. Constructed wetlands for waste water treatment. Crit Rev Environ Sci Technol. 2001;31:351–409.
  • Yadav S, Chandra R. Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent polluted natural wetland site, Unnao, India. Environ Earth Sci. 2011;62:1235–1243.
  • Ji P, Song Y, Sun T, et al. In-situ cadmium phytoremediation using Solanum Nigrum L: the bio-accumulation characterestics trail. Int J Phytoremediat. 2011;13:1014–1023.
  • Dipu S, Anju A, Kumar V, Thanga SG. Phytoremediation of diary effluent by constructed wetland technology using wetland macrophytes. Global J Environ Res. 2010;4:90–100.
  • Zaier H, Nayak T, Ben Rejeb K, Lakhdar A, Rejeband S, Jemal F. Effects of EDTA on Phytoextraction of heavy metals (Zn, Mn, Pb) from sludge amended soil with Brassica napus. Bioresour Technol. 2010;101:3978–3998.
  • Weiss J, Hondzo M, Biesboer D, Siemmens M. Laboratory study of heavy metal phytoremediation by three wetland macrophytes. Int J Phytoremediat. 2006;8:245–259.
  • Chatthai M, Kaukinen KH, Tranbarger TJ, Gupta PK, Misra S. The isolation of a novel metallothione in related cDNA expressed in somatic and zygotic embryos of Douglas fir: Regulation of ABA, osmoticum and metal ions. Plant Mol Biol. 1997;34:243–254.
  • Zhou J, Goldsbrough PB. Structure, organization and expression of metallothionein gene family in Arabidopsis. Mol Gen Genet. 1995;248:318–328.
  • Van der Zaal BJ, Neuteboom LW, Pinas JE, et al. Over expression of a novel Arabidopsis gene relared to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 1999;119:1047–1055.
  • Hirschi KD, Korenkov VD, Wilganowski NL, et al. Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol. 2000;124:125–133.
  • Dixon A, Simon M, Burkitt T. Assessing the environmental impact of two options for small scale wastewater treatment: comparing a reed bed and an aerated biological filter using a life cycle approach. Ecol Eng. 2003;20:297–308.
  • Hans B. Functions of macrophytes in constructed wetlands. Water Sci Technol. 1994;29:71–78.
  • Yeh T, Lin C, Chen C, Pan C. Heavy metal biosorption properties of four harvested macrophytes. J Hazard Toxic Radioact Waste. 2011;15:108–113.
  • Madjone P, Murillo JM, Maranon T, Cabrera F, Lopez R. Bioaccumulation of As, Cd, Cu, Fe and Pb in wild grasses affected by the aznalcollar mine spill (SW Spain). Sci Total Environ. 2002;290:105–120.
  • Roy S, Labelle S, Mehta P. Phytoremediation of heavy metal and PAH-contaminated brownfield sites. Plant Soil. 2005;272:277–290.
  • Seuntjens P, Nowack B, Schulin R. Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil. 2004;265:61–73.
  • Livestrong.com. Dangers of calcium disodium EDTA. http://www.livestrong.com/article/220542-dangers-of-calcium-disodium-edta/. Accessed August 16, 2013.
  • Finzgar N, Kos S, Lestan D. Bioavailability and mobility of Pb after soil treatment with different remediation methods. Plant Soil Environ. 2006;52:25–34.
  • Lu L, Tian S, Li T. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: The impact of citric acid and tartaric acid. J Zheijang Univ Sci B. 2013;14:106–114.
  • Chen Y, Wang Y, Wu W, Lin Q, Xue S. Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Sci Total Environ. 2006;356:247–255.
  • Qu J, Wang L, Yuan X, Cong Q, Guan SS. Effects of ammonium molybdate on phytoremediation by alfalfa plants and immobilization of toxic metals in soils. Environ Earth Sci. 2011;64:2175–2182.
  • Turan M, Esringu A. Phytoremediation based on canola (Brassica napus L) and Indian mustard (Brassica juncea L) planted on spiked soil in aliquot amount of Cd, Cu, Pb and Zn. Plant Soil Environ. 2007;53:7–15.
  • Fasaei RG. Malic acid and phosphorus influences on nickel; phytoremediation efficiency and metal nutrients relationships in a Ni polluted calcareous soil. Intl Res J Appl Basic Sci. 2012;3:2805–2808.
  • Neugschwandtner RW, Tlustos P, Komarek M, Szakova J, Jakoubkova L. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metal mobilization over a three year period. Int J Phytoremediat. 2012;14:754–771.
  • Sinhal VK, Srivastava A, Singh VP. EDTA and citric acid mediated phytoextraction of Zn, Cu, Pb and Cd through marigold (Tagetes erecta). J Environ Biol. 2010;31:255–259.
  • Meagher RB, Heaton AC. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol. 2005;32:502–513.
  • Wasay SA, Barrington SF, Tokunaga S. Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ Technol. 1998;19:369–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.