357
Views
17
CrossRef citations to date
0
Altmetric
Articles

Toxicity and effects of copper oxide nanoparticles on cognitive performances in rats

, , , , &

References

  • Bertinato J, L’Abbé MR. Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. J Nutr Biochem. 2004;15(6):316–322. doi:10.1016/j.jnutbio.2004.02.004. PMID: 15157936.
  • Bulcke F, Dringen R, Scheiber IF. Neurotoxicity of copper. Adv Neurobiol. 2017;18:313–343. doi:10.1007/978-3-319-60189-2_16. PMID: 28889275.
  • Ameh T, Sayes CM. The potential exposure and hazards of copper nanoparticles: a review. Environ Toxicol Pharmacol. 2019;71:103220. PMID:31306862. doi:10.1016/j.etap.2019.103220.
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. PMID:16002369. doi:10.1289/ehp.7339.
  • Sabella S, Carney RP, Brunetti V, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale. 2014;6(12):7052–7061. PMID: 24842463. doi:10.1039/c4nr01234h.
  • Kumar V, Kalita J, Misra UK, et al. A study of dose response and organ susceptibility of copper toxicity in a rat model. J Trace Elem Med Biol. 2015;29:269–274. PMID: 25022334. doi:10.1016/j.jtemb.2014.06.004.
  • Chen Z, Meng H, Xing G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett. 2006;163(2):109–120. PMID: 16289865. doi:10.1016/j.toxlet.2005.10.003.
  • Li CH, Shen CC, Cheng YW, et al. Organ biodistribution, clearance and genotoxicity of oral administered zinc oxide nanoparticules in mices. Nanotoxicology. 2012;6(7):746–756. PMID:21950449. doi:10.3109/17435390.2011.620717.
  • Cava RJ. Structural chemistry and the local charge picture of copper oxide superconductors. Science. 1990;247(4943):562–656. PMID:17771881. doi:10.1126/science.247.4943.656.
  • Tranquada JM, Sternlieb BJ, Axe JD, et al. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature. 1995;375(6532):561–563. doi:10.1038/375561a0.
  • Cioffi N, Ditaranto N, Torsi L, et al. Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem. 2005;381(3):607–616. PMID: 15349710. doi:10.1007/s00216-004-2761-4.
  • Goswani U, Dutta A, Raza A, et al. Transferrin-copper nanocluster-doxorubicin nanoparticles as targeted theranostic cancer nanodrug. ACS Appl Mater Interfaces. 2018;10(4):3282–3294. PMID: 29278317. doi:10.1021/acsami.7b15165.
  • Lu HD, Wang LZ, Wilson BK, et al. Copper loading of preformed nanoparticles for PET-imaging applications. ACS Appl Mater Interfaces. 2018;10(4):3191–3199. PMID: 29272577. doi:10.1021/acsami.7b07242.
  • Borkow G, Gabbay J. Putting copper into action: copper impregnated products with potent biocidal activities. FASEB J. 2004;18(14):1728–1730. PMID: 15345689. doi:10.1096/fj.04-2029fje.
  • Gabbay J, Mishal J, Magen E, et al. Copper oxide impregnated textiles with potent biocidal activities. J Ind Textil. 2006;35(4):323–335. doi:10.1177/1528083706060785.
  • Dobrucka R, Kaczmarek M, Łagiedo M, et al. Evaluation of biologically synthesized Au-CuO and CuO-ZnO nanoparticles against glioma cells and microorganisms. Saudi Pharm J. 2019;27(3):373–383. PMID: 30976181. doi:10.1016/j.jsps.2018.12.006.
  • Borkow G, Zatcoff RC, Gabbay J. Reducing the risk of skin pathologies in diabetics by using copper impregnated socks. Med Hypotheses. 2009;73(6):883–886. PMID: 19559540. doi:10.1016/j.mehy.2009.02.050.
  • Borkow G, Gabbay J, Dardik R, et al. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen. 2010;18(2):266–275. PMID: 20409151. doi:10.1111/j.1524-475X.2010.00573.x.
  • Borkow G, Zhou SS, Page T, et al. A novel ant influenza copper oxide containing respiratory face mask. PLoS One. 2010;5(6):e11295. PMID: 20592763. doi:10.1371/journal.pone.0011295.
  • Cholewinska E, Juskiewiez J, Ognik K. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in rat model. J Trace Elem Med Biol. 2018;48:111–117. PMID: 29773169. doi:10.1016/j.jtemb.2018.03.017.
  • Lockman PR, Koziara JM, Mumper RJ, et al. Nanoparticle surface charges alter blood–brain barrier integrity and permeability. J Drug Targeting. 2004;12(9-10):635–641. PMID: 15621689. doi:10.1080/10611860400015936.
  • Oberdörster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6-7):437–445. PMID:15204759. doi:10.1080/08958370490439597.
  • Sharma HS, Hussain S, Schlager J, et al. Influence of nanoparticles on blood-brain barrie permeability and brain edema formation in rats. Acta Neurochir Suppl. 2010;166:359–364. doi:10.1007/978-3-211-98811-4_65. PMID:19812977.
  • Sizova E, Miroshnikov S, Polyakova V, et al. Copper nanoparticles as modulators of apoptosis and structural changes in tissues. J Biomater Nanobiotechnol. 2012;03(01):97–104. doi:10.4236/jbnb.2012.31013.
  • Ibrahim MA, Khalaf AA, Galal MK, et al. Ameliorative influence of green tea extract on copper nanoparticle-induced hepatoxicity in rats. Nanoscale Res Lett. 2015;10(1):363. doi:10.1186/s11671-015-1068-z. PMID: 26377216.
  • Kumar J, Sathua KB, Flora SJS. Chronic copper exposure elicits neurotoxic responses in rat brain: assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and neurobehavioral parameters. Cell Mol Biol (Noisy-le-grand). 2019;65(1):27–35. PMID: 30782290. doi:10.14715/cmb/2019.65.1.5.
  • Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro. 2009;23(7):1365–1371. PMID: 19699289. doi:10.1016/j.tiv.2009.08.005.
  • Ahamed M, Siddiqui MA, Akhta MJ, et al. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun. 2010;396(2):578–583. PMID:20447378. doi:10.1016/j.bbrc.2010.04.156.
  • Khalaf AA, Zaki AR, Galal NK, et al. The potential protective effect of α-lipoic acid against nanocopper particle-induced hepatotoxicity in male rats. Hum Exp Toxicol. 2017;36(9):881–891. PMID: 27827802. doi:10.1177/0960327116674526.
  • Lei R, Wu C, Yang B, et al. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrototoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol. 2008;232(2):292–301. PMID:18706438. doi:10.1016/j.taap.2008.06.026.
  • Yang B, Wang Q, Lei R, et al. Systems toxicology used in nanotoxicology: mechanistic insights into the hepatotoxicity of nano-copper particles from toxic genomics. J Nanosci Nanotech. 2010;10(12):8527–8537. PMID:21121362. doi:10.1166/jnn.2010.2481.
  • Hejazy M, Koohi MK, Pour AB, et al. Toxicity of manufactured nanoparticles–a review. Nanomed Res J. 2018;3(1):1–9. doi:10.22034/nmrj.2018.01.001.
  • Bugata LSP, Venkata PP, Gungu AR, et al. Acute and subacute oral toxicity of copper oxide nanoparticles in female Wistar rats. J Appl Toxicol. 2019;39(5). doi:10.1002/jat.3760. PMID: 30618104.
  • Lomer MCE, Thompson RPH, Powell JJ. Fine and ultrafine particles of diets: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc. 2002;61(1):123–130. PMID: 12002786. doi:10.1079/PNS2001134.
  • Hillyer JF, Albrecht RM. Gastrointestinal persoption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci. 2001;90(12):1927–1936. PMID: 11745751.
  • Amara S, Ben Slama I, Mrad I, Rihane N, Jeljeli M, El-Mir L, et al. Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats. Nanotoxicol Suppl. 2014;1:208–215. PMID: 24524369. doi:10.3109/17435390.2013.879342.
  • M’rad I, Jeljeli M, Rihane N, et al. Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. EXCLI J. 2018;17:200–210. doi:10.17179/excli2017-1050. PMID: 29743858.
  • Li X, Sun W, An A. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats. Toxicol Ind Health. 2018;34(6):409–421. PMID: 29665767 doi:10.1177/07448233718758233.
  • Pellow S, Chopin P, File SE, et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14(3):149–167. PMID:2864480. doi:10.1016/0165-26(85)90031-7.
  • Maaroufi K, Ammari M, Jeljeli M, et al. Impairment of emotional behavior and spatial learning in adult Wistar rats by ferrous sulfate. Physiol Behav. 2009;96(2):343–349. PMID: 19027765. doi:10.1016/j.physbeh.2008.10.019.
  • Ramos A, Berton O, Mormede P, et al. A multiple-test study of anxiety-related behaviours in six in bred rat strains. Behav Brain Res. 1997;85(1):57–69. PMID:9095342. doi:10.1016/S0166-4328(96)00164-7.
  • Maaroufi K, Had-Aissouni L, Melon C, Sakly M, Abdelmelek H, Poucet B, Save E. Spatial learning, monoamines and oxidative stress in rats exposed to 900MHz electromagnetic field in combination with iron overload. Behav Brain Res. 2013;258:80–89. PMID: 24144546. doi:10.1016/j.bbr.2013.10.016.
  • Deguil J, Chavant F, Lafay-Chebassier C, et al. Neuroprotective effect of PACAP on translational control alteration and cognitive decline in MPTP Parkinsonian mice. Neurotox Res. 2010;17(2):142–155. PMID: 19626386. doi:10.1007/s12640-009-9091-4.
  • Chibber S, Shanker R. Can CuO nanoparticles lead to epigenetic regulation of antioxidant enzyme system. J Appl Toxicol. 2017;37(1):84–91. PMID: 27687502. doi:10.1002/jat.3392.
  • An L, Liu S, Yang Z, et al. Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett. 2012;213(2):220–227. PMID: 22820425. doi:10.1016/j.toxlet.2012.07.007.
  • De Jong WH, De Rijk E, Bonetto A, et al. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-time oral exposure in rats. Nanotoxicology. 2018:50–72. doi:10.1080/17435390.2018.1530390.
  • Ben-Slama I, Amara S, Mrad I, Rihane N, Omri K, El Ghoul J, et al. Sub-acute oral toxicity of zinc oxide nanoparticles in male rats. Nanomed Nanotechnol. 2015;6:248. doi:10.4172/2157-7439.1000284.
  • Mohammadyari A, Razavipour ST, Mohammadbeiji M, et al. Explore in-vivo toxicity assessment of copper oxide nanoparticle in Wistar rats. J Biol Today’s World. 2014;6:124–128.
  • Abbaoui A, El Hiba O, Gamrani H. The neuronal basis of copper induced modulation of anxiety state in rat. Acta Histochem. 2017;119(1):10–17. doi:10.1016/j.acthis.2016.10.003. PMID: 27863709.
  • Han D, Tian Y, Zhang T, et al. Nano-zinc oxide damages spatial cognition capability via over-enhanced long-term potentiation in hippocampus of Wistar rats. Inter J Nanomed. 2011;6:1453–1461. doi:10.2147/IJN.S18507. PMID:21796247.
  • Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, et al. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials. 2010;31:8043–8050. doi:10.1016/j.biomaterials.2010.07.011. PMID:20692697.
  • Rihane Ben Younes N, Amara S, Mrad I, et al. Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res. 2015;22(11):8728–8737. PMID: 25572266. doi:10.1007/s11356-014-4002-5.
  • Ibi D, Takuma K, Koike H, et al. Social isolation rearing induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem. 2008;105(3):921–932. PMID: 18182044. doi:10.1111/j.1471-4159.2007.05207.x.
  • Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60. PMID: 6471907. doi:10.1016/0165-26(84)90007-4.
  • Espinoza S, Pinto-Hamuy T, Carreno F, et al. Deficit in the water-maze after lesions in the anteromedial extrastriate cortex in rats. Physiol Behav. 1999;66(3):493–496. PMID: 10357439. doi:10.1016/S0031-9384(98)00315-1.
  • Parron C, Poucet B, Save E. Cooperation between the hippocampus and the entorhinal cortex in spatial memory: a disconnection study. Behav Brain Res. 2006;170(1):99–109. PMID: 16540184. doi:10.1016/j.bbr.2006.02.006.
  • Leiva J, Palestini M, Infante C, et al. Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the Morris water maze. Brain Res. 2009;1256:69–75. PMID: 19133238. doi:10.1016/j.brainres.2008.12.041.
  • Pessoa L. Cognition and emotion. Scholarpedia. 2009;4(1):4567–4587. doi:10.4249/scholarpedia.4567.
  • Lee IC, Ko JW, Park SH, et al. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine. 2016;11:2883–2900. doi:10.2147/IJN.S106346. PMID: 27366066
  • Qualls-Creekmore E, Tong M, Holmes GM. Time-course of recovery of gastric emptying and motility in rats with experimental spinal cord injury. Neurogastroenterol Motil. 2010;1:62–69. doi:10.1111/j.1365-29822009.01347.x. PMID: 19566592.
  • Lee IC, Ko JW, Park SH, et al. Comparative toxicity and biodistribution assessments in rats following subchronic aoral rexposure to copper nanoparticles and microparticles. Part Fibre Toxicol. 2016;13(1):56. doi:10.1186/s12989-016-0169-x. PMID: 27788687
  • Joshi A, Thiel K, Jog K, et al. Uptake of intact copper oxide nanoparticles causes acute toxicity in cultured glial cells. Neurochem Res. 2019;44(9):2156–2169. doi:10.1007/s11064-019-02855-9. PMID:31414344.
  • Georgopoulos PG, Roy A, Yonone-Lioy MJ, et al. Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev. 2001;4(4):341–394. doi:10.1080/109374001753146207. PMID:11695043.
  • Chen Z, Meng H, Yuan H, et al. Identification of target organs of copper nanoparticles with ICP-MS technique. J Radioanal Nucl Chem. 2007;272(3):599–603. doi:10.1007/s10967-007-0631-1.
  • Zhu M, Nie G, Meng H, et al. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res. 2013;46(3):622–631. PMID:22891796. doi:10.1021/ar300031y.
  • Pietroiusti A, Magrini A, Campagnolo L. New frontiers in nanotoxicology: gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol Appl Pharmacol. 2016;299:90–95. PMID: 26723910. doi:10.1016/j.taap.2015.12.017.
  • Lach G, Schellekens H, Dinan TG, et al. Anxiety, depression and microbiome: a role for gut peptides. Neurotherapeutics. 2018;15(1):36–59. PMID: 29134359. doi:10.1007/s13311-017-0585-0.
  • Dempsey JL, Little M, Cui JY. Gut microbiome: an antermediery to neurotoxicty. Neurotoxicology. 2019;19:30080–30084. PMID: 31454513. doi:10.1016/j.neoro.2019.08.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.