140
Views
0
CrossRef citations to date
0
Altmetric
Articles

Factors influencing distribution patterns of cyanobacteria in an upland lake of the Kumaun Himalayas, India

ORCID Icon &

References

  • Edmonson W. Eutrophication effects on the food chain of lakes. Mem. Ist. Ital. Idrobiol. 1993; 52:113–132.
  • Carmichael WW. A world view—One-hundred twenty-seven years of research on toxic cyanobacteria—Where do we go from here?. In: Hudnell, KH, ed. Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. Advances in Experimental Medicine and Biology. Vol. 619. Berlin, Germany: Springer Science & Business Media; 2008:105–120.
  • Carmichael W, Boyer GL. Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae. 2016; 54:194–212. doi:10.1016/j.hal.2016.02.002.
  • Andersen T. Pelagic nutrient cycles. Herbivores as Sources and Sinks. New York: Springer Verlag, 1997.
  • Zamyadi A, Choo F, Newcombe G, Stuetz R, Henderson RK. A review of monitoring technologies for real-time management of cyanobacteria: recent advances and future direction. TrAC Trends Anal. Chem. 2016; 85:83–96. doi:10.1016/j.trac.2016.06.023.
  • Elser JJ. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biol. 1999;42(3):537–543. doi:10.1046/j.1365-2427.1999.00471.x.
  • Paerl HW. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr. 1988;33(4part2):823–847. doi:10.4319/lo.1988.33.4part2.0823.
  • Schindler JE. Food quality and zooplankton nutrition. J Animal Ecol. 1971;40(3):589–595. doi:10.2307/3439.
  • Carmichael WW, Mahmood NA, Hyde EG. Natural toxins from cyanobacteria (blue-green algae). In: Hall S, Strichartz G, eds. Marine Toxins: origin, Structure, and Molecular Pharmacology. American Chemical Society Symposium Series Number 418. Washington, D.C.: American Chemical Society; 1990:87–106.
  • Chorus I. Cyanobakterientoxine: Kenntnisstand und Forschungsprogramme. Dt. Ges. Limnol. (DGL), Tagungsberichte 1995. Berlin: Krefeld; 1996:269–280.
  • Reynolds CS. Cyanobacterial water-blooms. In: Callow P, ed. Advances in Botanical Research. Vol. 3. London: Academic Press; 1987:67–143.
  • Dinsdale MT, Walsby AE. The interrelations of cell turgor pressure, gas vacuolation, and buoyancy in a blue-green alga. J Exp Bot. 1972;23(2):561–570. doi:10.1093/jxb/23.2.561.
  • Seckbach J. Algae and Cyanobacteria in extreme environments. In: Seckbach J, ed. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 11. Springer Science & Business Media, New York; 2007:1–811.
  • Smith VH. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Can J Fish Aquat Sci. 1986;43(1):148–153. doi:10.1139/f86-016.
  • Paerl HW, Huisman J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Eviron Microb Rep. 2009;1(1):27–37. doi:10.1111/j.1758-2229.2008.00004.x.
  • Bormans M, Maršálek B, Jančula D. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review. Aquat Ecol. 2016;50(3):407–422. doi:10.1007/s10452-015-9564-x.
  • Coleman JE. Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct. 1992; 21(1):441–483. doi:10.1146/annurev.bb.21.060192.002301.
  • Reynolds CS. The Ecology of Phytoplankton. 2006. Cambridge: Cambridge University Press.
  • Wood SA, Prentice MJ, Smith K, Hamilton DP. Low dissolved inorganic nitrogen and increased heterocyte frequency: precursors to Anabaena planktonica blooms in a temperate, eutrophic reservoir. J Plankton Res. 2010; 32(9):1315–1325. doi:10.1093/plankt/fbq048.
  • Dale B, Edwards M, Pc R. Climate change and harmful algal blooms. In Ecology of Harmful Algae; 2006:367–378. Berlin: Springer.
  • De Stasio BT, Jr, Hill DK, Kleinhans JM, Nibbelink NP, Magnuson JJ. Potential effects of global climate change on small north‐temperate lakes: Physics, fish, and plankton. Limnol Oceanogr. 1996;41(5):1136–1149. doi:10.4319/lo.1996.41.5.1136.
  • Shapiro J. Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen. 1990; 24(1):38–54. doi:10.1080/03680770.1989.11898689.
  • Dokulil MT, Teubner K. Cyanobacterial dominance in lakes. Hydrobiologia. 2000; 438(1/3):1–12. doi:10.1023/A:1004155810302.
  • Vreca P, Muri G. Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina), induced by eutrophication changes. Limnol Oceanogr. 2006;51(1part2):781–790. doi:10.4319/lo.2006.51.1_part_2.0781.
  • Panigrahy S, Patel JG, Parihar JS. National Wetland Atlas: high altitude lakes of India. 2012. Ahmedabad, India: Space Applications Centre, ISRO.
  • Shukla UK, Bora DS. Sedimentation model for the quaternary intramontane Bhimtal–Naukuchiatal Lake deposits, Nainital, India. J. Asian Ear. Sc. 2005;25(6):837–848. doi:10.1016/j.jseaes.2004.05.010.
  • APHA. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association. Baltimore, Maryland: Port City Press,; 1998.
  • Gaarder T, Gran HH. Investigations of the production of plankton in the Oslo Fjord. Rapp, P. v. Reun. Cons. Perm. Int. Explor. Mer. 1927; 42:1–48.
  • Welch PS. Limnological Methods. New York: McGraw Hill Book Company Inc; 1948:XVIII.
  • APHA. Chlorophyll. In E. W. Rice, L. Bridgewater and A. P. H. Association, Method 10200 H, eds. Standard Methods for the Examination of Water and Wastewater. Washington, D.C.: American Public Health Association; 2012.
  • Bennett A, Bogorad L. Complementary chromatic adaptation in a filamentous blue green alga. J. Cell. Biol. 1973;58(2):419–435. doi:10.1083/jcb.58.2.419.
  • Reynolds CS. The Ecology of Freshwater Phytoplankton. Cambridge: Cambridge University Press; 1984.
  • Wasmund N. Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int Revue Ges Hydrobiol Hydrogr. 1997; 82(2):169–184. doi:10.1002/iroh.19970820205.
  • Kanoshina I, Lips U, Leppänen JM. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae. 2003; 2(1):29–41. doi:10.1016/S1568-9883(02)00085-9.
  • McQueen DJ, Lean DR. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario. Can J Fish Aquat Sci. 1987; 44(3):598–604. doi:10.1139/f87-073.
  • Welch EB. Ecological Effects of Wastewater. London, U.K: Chapman and Hall; 1992.
  • Caraco NF, Miller R. Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton. Can J Fish Aquat Sci. 1998; 155(1):54–62. doi:10.1139/f97-202.
  • Trimbee AM, Prepas EE. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can J Fish Aquat Sci. 1987;44(7):1337–1342. doi:10.1139/f87-158.
  • Watson SB, McCauley E, Downing JA. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr. 1997;42(3):487–495. doi:10.4319/lo.1997.42.3.0487.
  • Tilman D. Resource Competition and Community Structure. Princeton: Princeton University Press; 1982.
  • Paerl HW. Controlling harmful cyanobacterial blooms in a climatically more extreme world: management options and research needs. J Plank Res. 2017;39(5):763–771. doi:10.1093/plankt/fbx042.
  • Barica J, Kling H, Gibson J. Experimental manipulation of algal bloom composition by nitrogen addition. Can J Fish Aquat Sci. 1980;37(7):1175–1183. doi:10.1139/f80-150.
  • Walsby AE, Utkilen HC, Johnsen IJ. Buoyancy changes of a red coloured Oscillatoria agardhii in Lake Gjersjoen. Norway Arch fiir Hydrobiol. 1983; 97:18–38.
  • Huisman J, Weissing FJ. Competition for nutrients and light in a mixed water column: a theoretical analysis. Am Nat. 1995;146(4):536–564. doi:10.1086/285814.
  • Jeppesen E, Meerhoff M, Jacobsen BA, et al. Restoration of shallow lakes by nutrient control and biomanipulation—the successful strategy varies with lake size and climate. Hydrobiologia. 2007;581(1):269–285. doi:10.1007/s10750-006-0507-3.
  • Lilndenschmidt KE. Controlling the growth of Microcystis using surged artificial aeration. Internat Rev Hydrobiol. 1999; 84:243–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.