968
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Islet hypoplasia of adult offspring rats caused by intrauterine chronic hypoxia is compensated by up-regulation of INS and PDX-1

, , , & ORCID Icon
Article: 2231610 | Received 18 Mar 2023, Accepted 27 Jun 2023, Published online: 06 Jul 2023

References

  • Lynch TA, Westen E, Li D, Katzman PJ, Malshe A, Drennan K. Stillbirth in women with diabetes: a retrospective analysis of fetal autopsy reports. J Matern Fetal Neonatal Med. 2020;35(11):2091–9. doi:10.1080/14767058.2020.1779213.
  • Zur RL, Kingdom JC, Parks WT, Hobson SR. The placental basis of fetal growth restriction. Obstet Gynecol Clin North Am. 2020;47(1):81–98. doi:10.1016/j.ogc.2019.10.008.
  • Moore LG. Hypoxia and reproductive health: reproductive challenges at high altitude: fertility, pregnancy and neonatal well-being. Reproduction. 2021;161(1):F81–90. doi:10.1530/REP-20-0349.
  • Bianchi C, Taricco E, Cardellicchio M, Mandò C, Massari M, Savasi V, Cetin I. The role of obesity and gestational diabetes on placental size and fetal oxygenation. Placenta. 2021;103:59–63. doi:10.1016/j.placenta.2020.10.013.
  • Liao J, Zhang Z, Huang W, Huang Q, Bi G. Neonatal neuron specific enolase, a sensitive biochemical marker of neuronal damage, is increased in preeclampsia: a retrospective cohort study. Brain Dev. 2020;42(8):564–571. doi:10.1016/j.braindev.2020.04.011.
  • Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. A maternal high-fat diet induces DNA methylation changes that contribute to glucose intolerance in offspring. Front Endocrinol (Lausanne). 2019;10:871. doi:10.3389/fendo.2019.00871.
  • Sutovska H, Molcan L, Koprdova R, Piesova M, Mach M, Zeman M. Prenatal hypoxia increases blood pressure in male rat offspring and affects their response to artificial light at night. J Dev Orig Health Dis. 2021;12(4):587–594. doi:10.1017/S2040174420000963.
  • Lawrence KM, McGovern PE, Mejaddam A, Rossidis AC, Baumgarten H, Kim A, Grinspan JB, Licht DJ, Didier RA, Vossough A, et al. Chronic intrauterine hypoxia alters neurodevelopment in fetal sheep. J Thorac Cardiovasc Surg. 2019;157(5):1982–1991. doi:10.1016/j.jtcvs.2018.12.093.
  • Aiken CE, Tarry-Adkins JL, Spiroski AM, Nuzzo AM, Ashmore TJ, Rolfo A, Sutherland MJ, Camm EJ, Giussani DA, Ozanne SE. Chronic gestational hypoxia accelerates ovarian aging and lowers ovarian reserve in next-generation adult rats. FASEB J. 2019;33(6):7758–7766. doi:10.1096/fj.201802772R.
  • Tong Y, Zhang S, Riddle S, Zhang L, Song R, Yue D. Intrauterine hypoxia and epigenetic programming in lung development and disease. Biomedicines. 2021;9(8):944. doi:10.3390/biomedicines9080944.
  • Rudloff S, Bileck A, Janker L, Wanner N, Liaukouskaya N, Lundby C, Huber TB, Gerner C, Huynh-Do U. Dichotomous responses to chronic fetal hypoxia lead to a predetermined aging phenotype. Molecular & Cellular Proteomics: MCP. 2022;21(2):100190. doi:10.1016/j.mcpro.2021.100190.
  • Fajersztajn L, Veras MM. Hypoxia: from placental development to fetal programming. Birth Defects Res. 2017 Oct 16;109(17):1377–1385. doi:10.1002/bdr2.1142.
  • Norvilaitė K, Ramašauskaitė D, Bartkevičienė D, Žaliūnas B, Kurmanavičius J. Doppler ultrasonography of the fetal tibial artery in high-risk pregnancy and its value in predicting and monitoring fetal hypoxia in IUGR fetuses. Medicina (Kaunas). 2021;57(10):1036. doi:10.3390/medicina57101036.
  • Barker DJ, Thornburg KL. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta. 2013 Oct;34(10):841–845. doi:10.1016/j.placenta.2013.07.063.
  • Cao G, González J, Ortiz Fragola JP, Muller A, Tumarkin M, Moriondo M, Azzato F, Blanco MV, Milei J. Structural changes in endocrine pancreas of male Wistar rats due to chronic cola drink consumption. Role of PDX-1. PLoS One. 2021;16(6):e0243340. doi:10.1371/journal.pone.0243340.
  • Liu J, Lang G, Shi J. Epigenetic regulation of PDX-1 in type 2 diabetes mellitus. Diabetes Metab Syndr Obes. 2021;14:431–442. doi:10.2147/DMSO.S291932.
  • Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Hattori Y, Kageyama I, Teshigawara A, Nouchi Y, Ishikawa H, et al. Maternal fructose intake predisposes rat offspring to metabolic disorders via abnormal hepatic programming. FASEB J. 2021;35(12):e22030. doi:10.1096/fj.202101276R.
  • Christoforou ER, Sferruzzi-Perri AN. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell Mol Life Sci. 2020;77(23):4861–4898. doi:10.1007/s00018-020-03566-z.
  • Mohan R, Baumann D, Alejandro EU. Fetal undernutrition, placental insufficiency, and pancreatic β-cell development programming in utero. Am J Physiol Regul Integr Comp Physiol. 2018;315(5):R867–R878. doi:10.1152/ajpregu.00072.2018.
  • Boehmer BH, Limesand SW, Rozance PJ. The impact of IUGR on pancreatic islet development and β-cell function. J Endocrinol. 2017;235(2):R63–76. doi:10.1530/JOE-17-0076.
  • Marciniak A, Patro-Małysza J, Kimber-Trojnar Ż, Marciniak B, Oleszczuk J, Leszczyńska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwanese Journal Of Obstetrics And Gynecology query. 2017 Apr;56(2):133–138. doi:10.1016/j.tjog.2017.01.001.
  • Azimzadeh M, Jelodar G. Prenatal and early postnatal exposure to radiofrequency waves (900 MHz) adversely affects passive avoidance learning and memory. Toxicol Ind Health. 2020;36(12):1024–1030. doi:10.1177/0748233720973143.
  • Sun S, Zheng G, Zhou D, Zhu L, He X, Zhang C, Wang C, Yuan C. Emodin interferes with nitroglycerin-induced migraine in rats through CGMP-PKG pathway. Front Pharmacol. 2021 Oct 20;12:758026. doi:10.3389/fphar.2021.758026.
  • Ding H, Luo Y, Hu K, Huang H, Liu P, Xiong M, Zhu L, Yi J, Xu Y. Hypoxia in utero increases the risk of pulmonary hypertension in rat offspring and is associated with vasopressin type‑2 receptor upregulation. Mol Med Rep. 2020;22:4173–4182. doi:10.3892/mmr.2020.11533.
  • Zhang IX, Raghavan M, Satin LS. The endoplasmic reticulum and calcium homeostasis in pancreatic beta cells. Endocrinology. 2020;161:bqz028. doi:10.1210/endocr/bqz028.
  • Prentki M, Peyot ML, Masiello P, Madiraju SRM. Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic β-cell. Diabetes. 2020;69(3):279–290. doi:10.2337/dbi19-0014.
  • Castro MC, Villagarcía HG, Román CL, Maiztegui B, Flores LE, Schinella GR, Massa ML, Francini F. Chronological appearance of endocrine and metabolic dysfunctions induced by an unhealthy diet in rats. Medicina (Kaunas). 2021;58(1):8. doi:10.3390/medicina58010008.
  • Low BSJ, Lim CS, Ding SSL, Tan YS, NHJ N, Krishnan VG. Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant β cells. Nat Commun. 2021;12(1):3133. doi:10.1038/s41467-021-22843-4.
  • Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, et al. The emerging role of HDACs: pathology and therapeutic targets in diabetes mellitus. Cells. 2021;10(6):1340. doi:10.3390/cells10061340.
  • Takahashi H, Sakata N, Yoshimatsu G, Hasegawa S, Kodama S. Regenerative and transplantation medicine: cellular therapy using adipose tissue-derived mesenchymal stromal cells for type 1 diabetes mellitus. J Clin Med. 2019;8(2):249. doi:10.3390/jcm8020249.