618
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterizing the effects of Dechlorane Plus on β-cells: a comparative study across models and species

, , , , , , & show all
Article: 2361996 | Received 01 Dec 2023, Accepted 27 May 2024, Published online: 04 Jun 2024

References

  • International Diabetes Federation. Facts & figures. 2021 [accessed 2023 Aug 7]. https://idf.org/about-diabetes/facts-figus/.
  • Franks PW, McCarthy MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science. 2016;354(6308):69–16. doi:10.1126/science.aaf5094.
  • Arrebola JP, González-Jiménez A, Fornieles-González C, Artacho-Cordón F, Olea N, Escobar-Jiménez F, Fernández-Soto ML. Relationship between serum concentrations of persistent organic pollutants and markers of insulin resistance in a cohort of women with a history of gestational diabetes mellitus. Environ Res. 2015;136:435–440. doi:10.1016/j.envres.2014.11.007.
  • Esser A, Schettgen T, Gube M, Koch A, Kraus T. Association between polychlorinated biphenyls and diabetes mellitus in the German HELPcB cohort. Int J Hyg Envir Heal. 2016;219(6):557–565. doi:10.1016/j.ijheh.2016.06.001.
  • Gang N, Van Allen K, Villeneuve PJ, MacDonald H, Bruin JE. Sex-specific Associations Between Type 2 Diabetes Incidence and Exposure to Dioxin and Dioxin-like Pollutants: A Meta-analysis. Front Toxicol. 2022 [accessed 2023 Aug 3];3:685840. doi:10.3389/ftox.2021.685840.
  • Ongono JS, Dow C, Gambaretti J, Severi G, Boutron-Ruault M-C, Bonnet F, Fagherazzi G, Mancini FR. Dietary exposure to brominated flame retardants and risk of type 2 diabetes in the French E3N cohort. Environ Int. 2019;123:54–60. doi:10.1016/j.envint.2018.11.040.
  • Wang S-L, Tsai P-C, Yang C-Y, Leon Guo Y. Increased risk of diabetes and polychlorinated biphenyls and dioxins: a 24-year follow-up study of the Yucheng cohort. Diabetes Care. 2008;31(8):1574–1579. doi:10.2337/dc07-2449.
  • Stockholm Convention. What are POPs? 2019 [accessed 2023 Aug 7]. https://www.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx.
  • Feiteiro J, Mariana M, Cairrão E. Health toxicity effects of brominated flame retardants: From environmental to human exposure. Environ Pollut. 2021;285:117475. doi:10.1016/j.envpol.2021.117475.
  • Sharkey M, Harrad S, Abou-Elwafa Abdallah M, Drage DS, Berresheim H. Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide. Environ Int. 2020;144:106041. doi:10.1016/j.envint.2020.106041.
  • Zafar MI, Kali S, Ali M, Riaz MA, Naz T, Iqbal MM, Masood N, Munawar K, Jan B, Ahmed S. et al. Dechlorane plus as an emerging environmental pollutant in Asia: a review. Environ Sci Pollut Res. 2020;27(34):42369–42389. doi:10.1007/s11356-020-10609-2.
  • Stockholm Convention. POPRC-18. 2019 [accessed 2023 Aug 21]. https://chm.pops.int/Implementation/PublicAwareness/PressReleases/POPRC18PressRelease/tabid/9318/Default.aspx.
  • Zhu J, Feng Y, Shoeib M. Detection of dechlorane plus in residential indoor dust in the City of Ottawa, Canada. Environ Sci Technol. 2007;41(22):7694–7698. doi:10.1021/es071716y.
  • Ben Y-J, Li X-H, Yang Y-L, Li L, Di J-P, Wang W-Y, Zhou R-F, Xiao K, Zheng M-Y, Tian Y. et al. Dechlorane plus and its dechlorinated analogs from an e-waste recycling center in maternal serum and breast milk of women in wenling, China. Environ Pollut. 2013;173:176–181. doi:10.1016/j.envpol.2012.09.028.
  • Qiao L, Zheng X-B, Yan X, Wang M-H, Zheng J, Chen S-J, Yang Z-Y, Mai B-X. Brominated flame retardant (BFRs) and Dechlorane Plus (DP) in paired human serum and segmented hair. Ecotox Environ Safe. 2018;147:803–808. doi:10.1016/j.ecoenv.2017.09.047.
  • Rawn DFK, Quade SC, Corrigan C, Ménard C, Sun W-F, Breton F, Arbuckle TE, Fraser WD. Differences in mirex [dechlorane] and dechlorane plus [syn- and anti-] concentrations observed in Canadian human milk. Chemosphere. 2023;316:137784. doi:10.1016/j.chemosphere.2023.137784.
  • Sales C, Poma G, Malarvannan G, Portolés T, Beltrán J, Covaci A. Simultaneous determination of dechloranes, polybrominated diphenyl ethers and novel brominated flame retardants in food and serum. Anal Bioanal Chem. 2017;409(19):4507–4515. doi:10.1007/s00216-017-0411-x.
  • Siddique S, Xian Q, Abdelouahab N, Takser L, Phillips SP, Feng Y-L, Wang B, Zhu J. Levels of dechlorane plus and polybrominated diphenylethers in human milk in two Canadian cities. Environ Int. 2012;39(1):50–55. doi:10.1016/j.envint.2011.09.010.
  • Zhang H, Wang P, Li Y, Shang H, Wang Y, Wang T, Zhang Q, Jiang G. Assessment on the occupational exposure of manufacturing workers to dechlorane plus through blood and hair analysis. Environ Sci Technol. 2013;47(18):10567–10573. doi:10.1021/es401144c.
  • Lim J-S, Lee D-H, Jacobs DR Jr. Association of brominated flame retardants with diabetes and metabolic syndrome in the U.S. Population, 2003–2004. Diabetes Care. 2008;31(9):1802–1807. doi:10.2337/dc08-0850.
  • Krumm EA, Patel VJ, Tillery TS, Yasrebi A, Shen J, Guo GL, Marco SM, Buckley BT, Roepke TA. Organophosphate flame-retardants alter adult mouse homeostasis and gene expression in a sex-dependent manner potentially through interactions with ERα. Toxicol Sci. 2018;162(1):212–224. doi:10.1093/toxsci/kfx238.
  • Yanagisawa R, Koike E, Win-Shwe T-T, Yamamoto M, Takano H. Impaired lipid and glucose homeostasis in hexabromocyclododecane-exposed mice fed a high-fat diet. Environ Health Perspect. 2014 [2023 Aug 16]. 122(3):277–283. doi:10.1289/ehp.1307421.
  • Zhang Z, Sun Z-Z, Xiao X, Zhou S, Wang X-C, Gu J, Qiu L-L, Zhang X-H, Xu Q, Zhen B. et al. Mechanism of BDE209-induced impaired glucose homeostasis based on gene microarray analysis of adult rat liver. Arch Toxicol. 2013;87(8):1557–1567. doi:10.1007/s00204-013-1059-8.
  • Karandrea S, Yin H, Liang X, Heart EA. BDE-47 and BDE-85 stimulate insulin secretion in INS-1 832/13 pancreatic β-cells through the thyroid receptor and Akt. Environ Toxicol Pharmacol. 2017;56:29–34. doi:10.1016/j.etap.2017.08.030.
  • Peshdary V, Styles G, Rigden M, Caldwell D, Kawata A, Sorisky A, Atlas E. Exposure to low doses of dechlorane plus promotes adipose tissue dysfunction and glucose intolerance in male mice. Endocrinology. 2020;161(8):bqaa096. doi:10.1210/endocr/bqaa096.
  • Ibrahim M, MacFarlane EM, Matteo G, Hoyeck MP, Rick KRC, Farokhi S, Copley CM, O’Dwyer S, Bruin JE. Functional cytochrome P450 1A enzymes are induced in mouse and human islets following pollutant exposure. Diabetologia. 2020;63(1):162–178. doi:10.1007/s00125-019-05035-0.
  • Hohmeier HE, Mulder H, Chen G, Henkel-Rieger R, Prentki M, Newgard CB. Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes. 2000;49(3):424–430. doi:10.2337/diabetes.49.3.424.
  • Hoyeck MP, Angela Ching MAE, Basu L, van Allen K, Palaniyandi J, Perera I, Poleo-Giordani E, Hanson AA, Ghorbani P, Fullerton MD. et al. The aryl hydrocarbon receptor in β-cells mediates the effects of TCDD on glucose homeostasis in mice. Mol Metab. 2024;81:101893. doi:10.1016/j.molmet.2024.101893.
  • Balboa D, Barsby T, Lithovius V, Saarimäki-Vire J, Omar-Hmeadi M, Dyachok O, Montaser H, Lund P-E, Yang M, Ibrahim H. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol. 2022;40(7):1042–1055. doi:10.1038/s41587-022-01219-z.
  • Mar S, Filatov E, Nian C, Sasaki S, Zhang D, Lynn FC. Tracking insulin- and glucagon-expressing bihormonal cells during differentiation using an INSULIN and GLUCAGON double reporter human embryonic stem cell line. Dev Biol. 2023 Aug 14;2023–04. doi:10.1101/2023.04.19.537542.
  • Novakovsky G, Sasaki S, Fornes O, Omur ME, Huang H, Bayly CL, Zhang D, Lim N, Cherkasov A, Pavlidis P. et al. In silico discovery of small molecules for efficient stem cell differentiation into definitive endoderm. Stem Cell Rep. 2023;18(3):765–781. doi:10.1016/j.stemcr.2023.01.008.
  • Eizirik DL, Pipeleers DG, Ling Z, Welsh N, Hellerström C, Andersson A. Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury. Proc Natl Acad Sci USA. 1994;91(20):9253–9256. doi:10.1073/pnas.91.20.9253.
  • Jover R, Ponsoda X, Castell JV, Gómez-Lechón MJ. Evaluation of the cytotoxicity of ten chemicals on human cultured hepatocytes: Predictability of human toxicity and comparison with rodent cell culture systems. Toxicol In Vitro. 1992;6(1):47–52. doi:10.1016/0887-2333(92)90084-5.
  • Uhl EW, Warner NJ. Mouse models as predictors of human responses: evolutionary medicine. Curr Pathobiol Rep. 2015;3(3):219–223. doi:10.1007/s40139-015-0086-y.
  • Huang LT (Helen), Zhang D, Nian C, Lynn FC. Truncated CD19 as a selection marker for the isolation of stem cell derived β-cells. bioRxiv. 2023 Aug 21;2023–04. doi:10.1101/2023.04.05.535733.
  • Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu K-Y, Hu X, Botezelli JD, Asadi A, Hoffman BG, Kieffer TJ. et al. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab. 2012;16(6):723–737. doi:10.1016/j.cmet.2012.10.019.
  • Templeman NM, Clee SM, Johnson JD. Suppression of hyperinsulinaemia in growing female mice provides long-term protection against obesity. Diabetologia. 2015;58(10):2392–2402. doi:10.1007/s00125-015-3676-7.
  • Templeman NM, Skovsø S, Page MM, Lim GE, Johnson JD. A causal role for hyperinsulinemia in obesity. J Endocrinol. 2017;232(3):R173–R183. doi:10.1530/JOE-16-0449.
  • Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: an early indicator of metabolic Dysfunction. J Endocr Soc. 2019;3(9):1727–1747. doi:10.1210/js.2019-00065.
  • von Berghes C, Brabant G, Biebermann H, Krude H, Wiegand S. Proinsulin and the proinsulin/insulin ratio in overweight and obese children and adolescents: relation to clinical parameters, insulin resistance, and impaired glucose regulation. Pediatr Diabetes. 2011;12(3 Pt 2):242–249. doi:10.1111/j.1399-5448.2010.00734.x.
  • Mezza T, Ferraro PM, Sun VA, Moffa S, Cefalo CMA, Quero G, Cinti F, Sorice GP, Pontecorvi A, Folli F. et al. Increased β-cell workload modulates proinsulin-to-insulin ratio in humans. Diabetes. 2018;67(11):2389–2396. doi:10.2337/db18-0279.
  • Røder ME, Porte D, Schwartz RS, Kahn SE. Disproportionately elevated proinsulin levels reflect the degree of impaired B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1998;83(2):604–608. doi:10.1210/jc.83.2.604.
  • Wareham NJ, Byrne CD, Williams R, Day NE, Hales CN. Fasting proinsulin concentrations predict the development of type 2 diabetes. Diabetes Care. 1999;22(2):262–270. doi:10.2337/diacare.22.2.262.
  • Gregg BE, Moore PC, Demozay D, Hall BA, Li M, Husain A, Wright AJ, Atkinson MA, Rhodes CJ. Formation of a human β-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab. 2012;97(9):3197–3206. doi:10.1210/jc.2012-1206.
  • Linnemann AK, Baan M, Davis DB. Pancreatic β-cell proliferation in obesity. Adv Nutr. 2014;5(3):278–288. doi:10.3945/an.113.005488.
  • Hadjivassiliou V, Green MHL, James RFL, Swift SM, Clayton HA, Green IC. Insulin secretion, DNA damage, and apoptosis in human and rat islets of langerhans following exposure to nitric oxide, peroxynitrite, and cytokines. Nitric Oxide. 1998;2(6):429–441. doi:10.1006/niox.1998.0203.
  • MacDonald MJ, Longacre MJ, Stoker SW, Kendrick M, Thonpho A, Brown LJ, Hasan NM, Jitrapakdee S, Fukao T, Hanson MS. et al. Differences between human and rodent pancreatic islets. J Biol Chem. 2011;286(21):18383–18396. doi:10.1074/jbc.M111.241182.
  • Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets. 2017;9(6):109–139. doi:10.1080/19382014.2017.1342022.
  • Brissova M, Niland JC, Cravens J, Olack B, Sowinski J, Evans-Molina C. The integrated islet distribution program answers the call for improved human islet phenotyping and reporting of human islet characteristics in research articles. Diabetologia. 2019;62(7):1312–1314. doi:10.1007/s00125-019-4876-3.
  • Lyon J, Manning Fox JE, Spigelman AF, Kim R, Smith N, O’Gorman D, Kin T, Shapiro AMJ, Rajotte RV, MacDonald PE. Research-Focused isolation of human islets from donors with and without diabetes at the alberta diabetes institute IsletCore. Endocrinology. 2016;157(2):560–569. doi:10.1210/en.2015-1562.
  • Arrojo E, Drigo R, Roy B, MacDonald PE. Molecular and functional profiling of human islets: from heterogeneity to human phenotypes. Diabetologia. 2020;63(10):2095–2101. doi:10.1007/s00125-020-05159-8.
  • Ihm S-H, Matsumoto I, Sawada T, Nakano M, Zhang HJ, Ansite JD, Sutherland DER, Hering BJ. Effect of donor age on function of isolated human islets. Diabetes. 2006;55(5):1361–1368. doi:10.2337/db05-1333.
  • Wang Y, Danielson KK, Ropski A, Harvat T, Barbaro B, Paushter D, Qi M, Oberholzer J. Systematic analysis of donor and isolation factor’s impact on human islet yield and size distribution. Cell Transplant. 2013;22(12):2323–2333. doi:10.3727/096368912X662417.
  • Hart NJ, Powers AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia. 2019;62(2):212–222. doi:10.1007/s00125-018-4772-2.
  • Yeh C-C, Wang L-J, McGarrigle JJ, Wang Y, Liao C-C, Omami M, Khan A, Nourmohammadzadeh M, Mendoza-Elias J, McCracken B. et al. Effect of manufacturing procedures on human islet isolation from donor pancreata standardized by the north American islet donor score. Cell Transplant. 2017;26(1):33–44. doi:10.3727/096368916X692834.
  • MacFarlane EM, Bruin JE. Human pluripotent stem cells: a unique tool for toxicity testing in pancreatic progenitor and endocrine cells. Front Endocrinol. 2021 [2023 Aug 16]. 11:11. doi:10.3389/fendo.2020.604998.
  • Hogrebe NJ, Maxwell KG, Augsornworawat P, Millman JR. Generation of insulin-producing pancreatic β cells from multiple human stem cell lines. Nat Protoc. 2021;16(9):4109–4143. doi:10.1038/s41596-021-00560-y.
  • Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li M, Nguyen VQ, Giacometti S. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat Cell Biol. 2019;21(2):263–274. doi:10.1038/s41556-018-0271-4.
  • Oakie A, Nostro MC. Harnessing proliferation for the expansion of stem cell-derived pancreatic cells: advantages and limitations. Front Endocrinol (Lausanne). 2021;12:636182. doi:10.3389/fendo.2021.636182.
  • Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, O’Dwyer S, Quiskamp N, Mojibian M, Albrecht T. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–1133. doi:10.1038/nbt.3033.
  • Hectors TLM, Vanparys C, Pereira-Fernandes A, Martens GA, Blust R, Laudet V. Evaluation of the INS-1 832/13 cell line as a beta-cell based screening system to assess pollutant effects on beta-cell function. PLoS One. 2013;8(3):e60030. doi:10.1371/journal.pone.0060030.
  • Tamaki M, Fujitani Y, Hara A, Uchida T, Tamura Y, Takeno K, Kawaguchi M, Watanabe T, Ogihara T, Fukunaka A. et al. The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest. 2013;123(10):4513–4524. doi:10.1172/JCI68807.
  • Mitchell RK, Hu M, Chabosseau PL, Cane MC, Meur G, Bellomo EA, Carzaniga R, Collinson LM, Li W-H, Hodson DJ. et al. Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance. Mol Endocrinol. 2016;30(1):77–91. doi:10.1210/me.2015-1227.
  • Gochfeld M. Sex differences in human and animal toxicology: toxicokinetics. Toxicol Pathol. 2017;45(1):172. doi:10.1177/0192623316677327.
  • Adams S, Wiersielis K, Yasrebi A, Conde K, Armstrong L, Guo GL, Roepke TA. Sex- and age-dependent effects of maternal organophosphate flame-retardant exposure on neonatal hypothalamic and hepatic gene expression. Reprod Toxicol. 2020;94:65–74. doi:10.1016/j.reprotox.2020.04.001.
  • Leonetti C, Butt CM, Hoffman K, Hammel SC, Miranda ML, Stapleton HM. Brominated flame retardants in placental tissues: associations with infant sex and thyroid hormone endpoints. Environ Health. 2016;15(1):113. doi:10.1186/s12940-016-0199-8.