160
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of water repellency in soils for geotechnical applications

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 753-763 | Received 31 Jul 2023, Accepted 05 Dec 2023, Published online: 30 Dec 2023

References

  • ASTM International. 2016. “D5084 - Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter.” Astm D5084, 4.
  • ASTM International. 2017a. ASTM D4318-17. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. https://doi.org/10.1520/D7928-21E01.
  • ASTM International. 2017b. “D6913: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis.” ASTM D6913 (17). https://doi.org/10.1520/D6913_D6913M-17
  • ASTM International. 2021. ASTM D698: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 Ft-Lbf/ft3 (600 kN-M/m3), ASTM International. https://doi.org/10.1520/D0698-12R21.
  • ASTM International. 2021. “Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis.” ASTM D7928. https://doi.org/10.1520/D7928-21E01.
  • ASTM International. 2023. “ASTM D854 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.” ASTM D854 ASTM International 4. https://doi.org/10.1520/D0854-23.
  • Bachmann, J., A. Ellies, and K. H. Hartge 2000. Development and Application of a New Sessile Drop Contact Angle Method to Assess Soil Water Repellency. www.elsevier.com/locate/jhydrol.
  • Bardet, J. P., M. Jesmani, N. Jabbari, and S. D. N. Lourenco. 2015. “Permeability and Compressibility of Wax-Coated Sands.” Géotechnique 64 (5): 341–350. https://doi.org/10.1680/Geot.13.P.118.https://doi.org/10.1680/GEOT.13.P.118.
  • Behravan, A., S. M. Aqib, N. J. Delatte, M. T. Ley, and A. Rywelski. 2022. “Performance Evaluation of Silane in Concrete Bridge Decks Using Transmission X-Ray Microscopy.” International Journal of Offshore and Polar Engineering 12 (5). https://doi.org/10.3390/app12052557.
  • Brooks, T., J. L. Daniels, M. Uduebor, B. Cetin, M. Wasif Naqvi, and P. D. Student. 2022. Engineered Water Repellency for Mitigating Frost Action in Iowa Soils 448–456. https://doi.org/10.1061/9780784484012.046.
  • Carrillo, M. L. K., S. R. Yates, and J. Letey. 1999. “Measurement of Initial Soil-Water Contact Angle of Water Repellent Soils.” Soil Science Society of America Journal 63 (3): 433–436. https://doi.org/10.2136/SSSAJ1999.03615995006300030002X.
  • Choi, Y., H. Choo, T. S. Yun, C. Lee, and W. Lee. 2016. “Engineering Characteristics of Chemically Treated Water-Repellent Kaolin.” Materials 9 (12). https://doi.org/10.3390/ma9120978.
  • Chorianopoulos, J., L. Iacumin, A. B. Cabello, E. N. Gkana, A. I. Doulgeraki, N. G. Bautista-Gallego, G.-J. E. Nychas, and A. Garrido-Fernández. 2017. “Anti-Adhesion and Anti-Biofilm Potential of Organosilane Nanoparticles Against Foodborne Pathogens.” Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.01295.
  • Daniels, J. L., and M. S. Hourani 2009. “Soil Improvement with Organo-Silane.” U.S.-China Workshop on Ground Improvement Technologies 2009, 217–224. https://doi.org/10.1061/41025(338)23
  • Daniels, J. L., W. G. Langley, M. Uduebor, and B. Cetin. 2021. “Engineered Water Repellency for Frost Mitigation: Practical Modeling Considerations.” Geo-Extreme 2021:385–391. https://doi.org/10.1061/9780784483701.037.
  • Debano, L. F. 2015. “Infiltration, Evaporation, and Water Movement as Related to Water Repellency.” Soil Conditioners 155–164. https://doi.org/10.2136/SSSASPECPUB7.C15.
  • de Jesús Arrieta Baldovino, J., R. L. dos Santos Izzo, and J. L. Rose. 2021. “Effects of Freeze–Thaw Cycles and Porosity/Cement Index on Durability, Strength and Capillary Rise of a Stabilized Silty Soil Under Optimal Compaction Conditions.” Geotechnical and Geological Engineering 39 (1): 481–498. https://doi.org/10.1007/s10706-020-01507-y.
  • Dore, G., P. Drouin, P. Pierre, and P. Desrochers 2005. Estimation of the Relationships of Road Deterioration to Traffic and Weather in Canada. http://www.bv.transports.gouv.qc.ca/mono/0965375.pdf.
  • Feyyisa, J. L., J. L. Daniels, and M. A. Pando. 2017. “Contact Angle Measurements for Use in Specifying Organosilane-Modified Coal Combustion Fly Ash.” Journal of Materials in Civil Engineering 29 (9): 29(9. https://doi.org/10.1061/(asce)mt.1943-5533.0001943.
  • Feyyisa, J. L., J. L. Daniels, M. A. Pando, and V. O. Ogunro. 2019. “Relationship Between Breakthrough Pressure and Contact Angle for Organo-Silane Treated Coal Fly Ash.” Environmental Technology & Innovation 14. https://doi.org/10.1016/j.eti.2019.100332.
  • FHWA. 1999.“A Quarter Century of Geotechnical Research” FHWA-RD-98-139. Accessed 23 02, 2023 https://www.fhwa.dot.gov/publications/research/infrastructure/geotechnical/98139/04.cfm
  • Fink, D. H. 1970. “Water Repellency and Infiltration Resistance of Organic-Film-Coated Soils.” Soil Science Society of America Journal 34 (2): 189–194. https://doi.org/10.2136/SSSAJ1970.03615995003400020007X.
  • Fink, D. H., and L. E. Myers. 1969. “Synthetic Hydrophobic Soils for Harvesting Precipitation.” Symposium on Water-Repellent Soils Riverside (Carlifornia). 221–240.
  • Gkana, E., Doulgeraki, A., Chorianopoulos, N, and Nychas, G. J (2017). Anti-adhesion and Anti-biofilm Potential of Organosilane Nanoparticles against Foodborne Pathogens. Frontiers in Microbiology. 8. https://doi.org/10.3389/fmicb.2017.01295.
  • Keatts, M. I., J. L. Daniels, W. G. Langley, M. A. Pando, and V. O. Ogunro. 2018. “Apparent Contact Angle and Water Entry Head Measurements for Organo-Silane Modified Sand and Coal Fly Ash.” Journal of Geotechnical and Geoenvironmental Engineering 144 (6): 144(6. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001887.
  • Khanzadeh Moradllo, M., B. Sudbrink, and M. T. Ley. 2016. “Determining the Effective Service Life of Silane Treatments in Concrete Bridge Decks.” Construction and Building Materials 116:121–127. https://doi.org/10.1016/J.CONBUILDMAT.2016.04.132.
  • King, P. M. 1981. “Comparison of Methods for Measuring Severity of Water Repellence of Sandy Soils and Assessment of Some Factors That Affect Its Measurement.” Australian Journal of Soil Research 19 (3). https://doi.org/10.1071/SR9810275.
  • Lambe, T. William. 1951. Soil Testing for Engineers 9. Wiley. https://doi.org/10.2134/agronj1951.00021962004300120015x
  • Lambe, T. W., C. W., Kaplar, and T. J., Lambie. 1969. “Effect of Mineralogical Composition of Fines on FrostSUusceptibility of Soils.” U S Engr Dept-Cold Regions Research & Eng Laboratory-Tech. ( Report 207).
  • Leelamanie, D. A. L., J. Karube, and A. Yoshida. 2008. “Characterizing Water Repellency Indices: Contact Angle and Water Drop Penetration Time of Hydrophobized Sand.” Soil Science & Plant Nutrition 54 (2). https://doi.org/10.1111/j.1747-0765.2007.00232.x.
  • Lee, C., H.-J. Yang, T. S. Yun, Y. Choi, and S. Yang. 2015. “Water-Entry Pressure and Friction Angle in an Artificially Synthesized Water-Repellent Silty Soil.” Vadose Zone Journal 14 (4). https://doi.org/10.2136/vzj2014.08.0106.
  • Letey, J., M. L. K. Carrillo, and X. P. Pang. 2000. “Approaches to Characterize the Degree of Water Repellency.” Canadian Journal of Fisheries and Aquatic Sciences 231-232:61–65. https://doi.org/10.1016/S0022-1694(00)00183-9.
  • Lin, H., S. D. N. Lourenço, T. Yao, Z. Zhou, A. T. Yeung, P. D. Hallett, G. I. Paton, K. Shih, B. C. H. Hau, and J. Cheuk. 2019. “Imparting Water Repellency in Completely Decomposed Granite with Tung Oil.” Journal of Cleaner Production 230:1316–1328. https://doi.org/10.1016/J.JCLEPRO.2019.05.032.
  • Lourenço, S. D. N., Y. Saulick, S. Zheng, H. Kang, D. Liu, H. Lin, and T. Yao. 2018. “Soil Wettability in Ground Engineering: Fundamentals, Methods, and Applications”. Acta Geotechnica 13(1). Springer Verlag. https://doi.org/10.1007/s11440-017-0570-0.
  • Mahedi, M., S. Satvati, B. Cetin, and J. L. Daniels. 2020. “Chemically Induced Water Repellency and the Freeze–Thaw Durability of Soils.” Journal of Cold Regions Engineering 34 (3): 04020017. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000223.
  • Oluyemi-Ayibiowu, B. D., and M. A. Uduebor. 2019. “Effect of Compactive Effort on Compaction Characteristics of Lateritic Soil Stabilized with Terrasil.” Journal of Multidisciplinary Engineering Science Studies 5 (2): 2458–2925. www.jmess.org.
  • Quinton, J., L. Thomsen, and P. Dastoor. 1997. “Adsorption of Organosilanes on Iron and Aluminium Oxide Surfaces.” Surface and Interface Analysis 25 (12): 931–936. https://doi.org/10.1002/(SICI)1096-9918(199711)25:12<931:AID-SIA325>3.0.CO;2-F.
  • Roy, W. R. *., I. G. *. Krapac, S.-F. J. *. Chou, and R. A. Griffin. 1992. “Technical Resource Document: Batch-Type Procedures for Estimating Soil Adsorption of Chemicals.” Report (Issue 87)
  • Saulick, Y., S. D. N. Lourenço, B. A. Baudet, S. K. Woche, and J. Bachmann. 2018. “Physical Properties Controlling Water Repellency in Synthesized Granular Solids.” European Journal of Soil Science 69 (4): 698–709. https://doi.org/10.1111/EJSS.12555.
  • Uduebor, M., E. Adeyanju, Y. Saulick, J. Daniels, and B. Cetin 2022. “A Review of Innovative Frost Heave Mitigation Techniques for Road Pavements.” International Conference on Transportation and Development 2022. https://doi.org/10.1061/9780784484357
  • Uduebor, M., E. Adeyanju, Y. Saulick, J. Daniels, and B. Cetin. 2023. “Engineered Water Repellency for Moisture Control in Airport Pavement Soils.” Airfield and Highway Pavements 2023:92–102. https://doi.org/10.1061/9780784484906.009.
  • Uduebor, M., J. Daniels, D. Adeyanju, F. Sadiq, and B. Cetin, 2023. “Engineered water Repellency for Resilient and Sustainable Pavement Systems.” International Journal of Geotechnical Engineering 17 (5): 530–540. https://doi.org/10.1080/19386362.2023.2241280.
  • Uduebor, M., J. Daniels, N. Mohammad, and B. Cetin. 2022. Engineered Water Repellency in Frost Susceptible Soils 457–466. https://doi.org/10.1061/9780784484012.047.
  • U.S. Army Corps of Engineers. 1965. “Soils and Geology- Pavement Design for Frost Conditions.” Department of the Army Courses Department of Civil Engineering, University of New Technical Manual TM 5-818–2.
  • Wasif Naqvi, M., M. F. Sadiq, B. Cetin, M. Uduebor, and J. Daniels. 2022. “Investigating the Frost Action in Soils.” Geo-Congress 2022:257–267. https://doi.org/10.1061/9780784484067.027.
  • Yuan, G., A. Che, and H. Tang. 2021. “Evaluation of Soil Damage Degree Under Freeze–Thaw Cycles Through Electrical Measurements.” Engineering Geology 293:106297. https://doi.org/10.1016/J.ENGGEO.2021.106297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.