101
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical study on microscopic behaviour of non-crushable cemented granular media subjected to direct shear test

ORCID Icon, ORCID Icon & ORCID Icon
Received 13 Mar 2023, Accepted 02 May 2024, Published online: 20 May 2024

References

  • Anthony, J. L., and C. Marone. 2005. “Influence of Particle Characteristics on Granular Friction.” Journal of Geophysical Research: Solid Earth 110 (B8). Portico. https://doi.org/10.1029/2004jb003399.
  • Asghari, E., D. G. Toll, and S. M. Haeri. 2003. “Triaxial Behaviour of a Cemented Gravely Sand, Tehran Alluvium.” Geotechnical and Geological Engineering 21 (1): 1–28. https://doi.org/10.1023/A:1022934624666.
  • Cho, N., C. D. Martin, and D. C. Sego. 2008. “Development of a Shear Zone in Brittle Rock Subjected to Direct Shear.” International Journal of Rock Mechanics and Mining Sciences 45 (8): 1335–1346. https://doi.org/10.1016/j.ijrmms.2008.01.019.
  • Chompoorat, T., S. Likitlersuang, S. Sitthiawiruth, V. Komolvillas, P. Jamsawang, and P. Jongpradist. 2021. “Mechanical Properties and Microstructures of Stabilised Dredged Expansive Soil from Coal Mine.” Geomechanics and Engineering: An International Journal 25 (2): 143–157. https://doi.org/10.12989/gae.2021.25.2.143(2021).
  • Chompoorat, T., S. Likitlersuang, T. Thepumong, and P. Jamsawang. 2021. “Solidification of Sediments Deposited in Reservoirs with Cement and Fly Ash for Road Construction.” International Journal of Geosynthetics & Ground Engineering 7 (4): 85. https://doi.org/10.1007/s40891-021-00328-0.
  • Chompoorat, T., K. Thanawong, and S. Likitlersuang. 2021. “Swell-Shrink Behaviour of Cement with Fly-Ash Stabilised Lake Bed Sediment.” Bulletin of Engineering Geology and the Environment 80 (3): 2617–2628. https://doi.org/10.1007/s10064-020-02069-2.
  • Chompoorat, T., T. Thepumong, A. Khamplod, and S. Likitlersuang. 2021. “Mechanical - Microstructure Properties and Shrinkage Characteristic of Cement- and Fly Ash- Treated Soft Bangkok Clay Used for Deep Mixing.” Construction and Building Materials 316:125858. https://doi.org/10.1016/j.conbuildmat.2021.125858.
  • Chompoorat, T., T. Thepumong, S. Taesinlapachai, and S. Likitlersuang. 2021. “Repurposing of Stabilised Dredged Lakebed Sediment in Road Base Construction.” Journal of Soils and Sediments 21 (7): 2719–2730. https://doi.org/10.1007/s11368-021-02974-3.
  • Clough, G. W., N. Sitar, R. C. Bachus, and N. S. Rad. 1981. “Cemented Sands Under Static Loading.” Journal of the Geotechnical Engineering Division 107 (6): 799–817. https://doi.org/10.1061/ajgeb6.0001152.
  • Collins, B. D., and N. Sitar. 2009. “Geotechnical Properties of Cemented Sands in Steep Slopes.” Journal of Geotechnical and Geoenvironmental Engineering 135 (10): 1359–1366. https://doi.org/10.1061/(ASCE)gt.1943-5606.0000094.
  • Coop, M. R. 1990. “The Mechanics of Uncemented Carbonate Sands.” Géotechnique 40 (4): 607–626. https://doi.org/10.1680/geot.1990.40.4.607.
  • Coop, M. R., and J. H. Atkinson. 1993. “The Mechanics of Cemented Carbonate Sands.” Géotechnique 43 (1): 53–67. https://doi.org/10.1680/geot.1993.43.1.53.
  • Cundall, P. 1971. “A: A Computer Model for Simulating Progressive, Large-Scale Movement in Blocky Rock System.” Proceedings of the international symposium on rock mechanics, France 8: 129–136.
  • Cundall, P. A., and O. Strack. 1979. “D.: A Discrete Numerical Model for Granular Assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
  • Das, S. K., and A. Das. 2019. “Influence of Quasi-Static Loading Rates on Crushable Granular Materials: A DEM Analysis.” Powder Technology 344:393–403. https://doi.org/10.1016/j.powtec.2018.12.024.
  • Das, S. K., and A. Das. 2020. “A DEM Study on the Rate-Dependent Volumetric Response of Non-Crushable Sand.” In Applied Numerical Modeling in Geomechanics – 2020 – Billaux, Hazzard, edited by Nelson and Schöpfer, 6–10. Minneapolis: Paper: 10-06 ©2020 Itasca International, Inc.
  • Das, A., A. Tengattini, G. Nguyen, and I. Einav. 2013. “A Micromechanics Based Model for Cemented Granular Materials.” Springer Series in Geomechanics and Geoengineering: 527–534. https://doi.org/10.1007/978-3-642-32814-5_71.
  • de Bono, J., G. McDowell, and D. Wanatowski. 2012. “Modelling Cemented Sand Using Dem.” Advances in Transportation Geotechnics 2:680–685. https://doi.org/10.1201/b12754-103.
  • de Bono, J., G. McDowell, and D. Wanatowski. 2015. “Investigating the Micro Mechanics of Cemented Sand Using DEM.” International Journal for Numerical and Analytical Methods in Geomechanics 39 (6): 655–675. https://doi.org/10.1002/nag.2340.
  • Desrues, J., and G. Viggiani. 2004. “Strain Localization in Sand: An Overview of the Experimental Results Obtained in Grenoble Using Stereophotogrammetry.” International Journal for Numerical and Analytical Methods in Geomechanics 28 (4): 279–321. https://doi.org/10.1002/nag.338.
  • Hamidi, A., and S. M. Haeri. 2008. “Stiffness and Deformation Characteristics of a Cemented Gravely Sand.” International Journal of Civil Engineering 6 (3): 159–173.
  • Holt, R., J. Kjølaas, I. Larsen, L. Li, A. Gotusso Pillitteri, and E. Sønstebø. 2005. “Comparison Between Controlled Laboratory Experiments and Discrete Particle Simulations of the Mechanical Behaviour of Rock.” International Journal of Rock Mechanics and Mining Sciences 42 (7–8): 985–995. https://doi.org/10.1016/j.ijrmms.2005.05.006.
  • Ismail, M. A., H. A. Joer, W. H. Sim, and M. F. Randolph. 2002. “Effect of Cement Type on Shear Behavior of Cemented Calcareous Soil.” Journal of Geotechnical and Geoenvironmental Engineering 128 (6): 520–529. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520).
  • Jiang, M., Y. Chen, and G. Lu. 2020. “Discrete Element Analysis of Direct Shear Test on Bonded Sand.” Japanese Geotechnical Society Special Publication 8 (12): 489–492. https://doi.org/10.3208/jgssp.v08.c47.
  • Jiang, Y., and Y. Li. 2016. “Discrete Element Simulation of the Direct Shear Test of Sandy Soil.” Springer Proceedings in Physics: 801–810. https://doi.org/10.1007/978-981-10-1926-5_83.
  • Jiang, M., J. Liu, Z. Shen, and B. Xi. 2018. “Exploring the Critical State Properties and Major Principal Stress Rotation of Sand in Direct Shear Test Using the Distinct Element Method.” Granular Matter 20 (2). https://doi.org/10.1007/s10035-018-0796-z.
  • Lade, P. V., and D. D. Overton. 1989. “Cementation Effects in Frictional Materials.” Journal of Geotechnical Engineering 115 (10): 1373–1387. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:10(1373).
  • Lade, P. V., and J. A. Yamamuro. 1996. “Undrained Sand Behavior in Axisymmetric Tests at High Pressures.” Journal of Geotechnical Engineering 122 (2): 120–129. https://doi.org/10.1061/(asce)0733-9410(1996)122:2(120).
  • Lee, M.-J., S.-J. Hong, Y.-M. Choi, and W. Lee. 2010. “Evaluation of Deformation Modulus of Cemented Sand Using CPT and DMT.” Engineering Geology 115 (1–2): 28–35. https://doi.org/10.1016/j.enggeo.2010.06.016.
  • Linear Parallel Bond Model — PFC 6.0 documentation. n.d. “Linear Parallel Bond Model—PFC 6.0 Documentation.” https://docs.itascacg.com/pfc600/common/contactmodel/linearpbond/doc/manual/cmlinearpbond.html?node1771(2019).
  • Liu, S. H. 2006. “Simulating a Direct Shear Box Test by Dem.” Canadian Geotechnical Journal 43 (2): 155–168. https://doi.org/10.1139/t05-097.
  • Mair, K., and C. Marone. 1999. “Friction of Simulated Fault Gouge for a Wide Range of Velocities and Normal Stresses.” Journal of Geophysical Research: Solid Earth 104 (B12): 28899–28914. Portico. https://doi.org/10.1029/1999jb900279.
  • Marri, A., D. Wanatowski, and H. S. Yu. 2012. “Drained Behaviour of Cemented Sand in High Pressure Triaxial Compression Tests.” Geomechanics and Geoengineering 7 (3): 159–174. https://doi.org/10.1080/17486025.2012.663938.
  • Nitka, M., and A. Grabowski. 2021. “Shear Band Evolution Phenomena in Direct Shear Test Modelled with Dem.” Powder Technology 391:369–384. https://doi.org/10.1016/j.powtec.2021.06.025.
  • Nygård, R., M. Gutierrez, R. K. Bratli, and K. Høeg. 2006. “Brittle–Ductile Transition, Shear Failure and Leakage in Shales and Mudrocks.” Marine and Petroleum Geology 23 (2): 201–212. https://doi.org/10.1016/j.marpetgeo.2005.10.001.
  • O’Sullivan, C., L. Cui, and J. Bray. 2004. “Three-Dimensional Discrete Element Simulations of Direct Shear Tests.” Numerical Modeling in Micromechanics via Particle Methods-2004: 373–382. https://doi.org/10.1201/b17007-55.
  • Philit, S., R. Soliva, R. Castilla, G. Ballas, and A. Taillefer. 2018. “Clusters of Cataclastic Deformation Bands in Porous Sandstones.” Journal of Structural Geology 114:235–250. https://doi.org/10.1016/j.jsg.2018.04.013.
  • Potyondy, D. O. 2011. “Parallel-Bond Refinements to Match Macroproperties of Hard Rock.” Continuum and Distinct Element Numerical Modeling in Geomechanics.
  • Potyondy, D. O., and P. A. Cundall. 2004. “A Bonded-Particle Model for Rock.” International Journal of Rock Mechanics and Mining Sciences 41 (8): 1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  • Rajesh, C., and G. R. Kumar. 2023. “A New Shear Test Setup for Determining Shear Strength of Normal and High Strength Concrete.” Structures 54:1046–1057. https://doi.org/10.1016/j.istruc.2023.05.132.
  • Schnaid, F., P. D. Prietto, and N. C. Consoli. 2001. “Characterization of Cemented Sand in Triaxial Compression.” Journal of Geotechnical and Geoenvironmental Engineering 127 (10): 857–868. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(857).
  • Tengattini, A., A. Das, G. D. Nguyen, G. Viggiani, S. A. Hall, and I. Einav. 2014. “A Thermomechanical Constitutive Model for Cemented Granular Materials with Quantifiable Internal Variables. Part I—Theory.” Journal of the Mechanics and Physics of Solids 70:281–296. https://doi.org/10.1016/j.jmps.2014.05.021.
  • Thomas, H. R., P. J. Vardon, and P. J. Cleall. 2014. “Three-Dimensional Behaviour of a Prototype Radioactive Waste Repository in Fractured Granitic Rock.” Canadian Geotechnical Journal 51 (3): 246–259. https://doi.org/10.1139/cgj-2013-0094.
  • Thornton, C., and L. Zhang. 2003. “Numerical Simulations of the Direct Shear Test.” Chemical Engineering & Technology 26 (2): 153–156. https://doi.org/10.1002/ceat.200390022.
  • Wang, Y.-H., and S.-C. Leung. 2008. “A Particulate-Scale Investigation of Cemented Sand Behavior.” Canadian Geotechnical Journal 45 (1): 29–44. https://doi.org/10.1139/t07-070.
  • Zhang, L., and C. Thornton. 2007. “A Numerical Examination of the Direct Shear Test.” Géotechnique 57 (4): 343–354. https://doi.org/10.1680/geot.2007.57.4.343.
  • Zhao, Z., L. Jing, and I. Neretnieks. 2012. “Particle Mechanics Model for the Effects of Shear on Solute Retardation Coefficient in Rock Fractures.” International Journal of Rock Mechanics and Mining Sciences 52:92–102. https://doi.org/10.1016/j.ijrmms.2012.03.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.