313
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Phytonutrient Inhibitors of SARS-CoV-2/NSP5-Encoded Main Protease (Mpro) Autocleavage Enzyme Critical for COVID-19 Pathogenesis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66:193–292. doi:10.1016/S0065-3527(06)66005-3. PMID: 16877062; PMCID: PMC7112330.
  • Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004;10(12 Suppl):S88–S97. doi:10.1038/nm1143. PMID: 15577937; PMCID: PMC7096017.
  • Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet. 2020;395(10229):1063–77. Epub 2020 Mar 4. PMID: 32145185; PMCID: PMC7155742. doi:10.1016/S0140-6736(19)33221-0.
  • Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020; 91(1):157–60. doi:10.23750/abm.v91i1.9397. PMID: 32191675; PMCID: PMC7569573.
  • Krichel B, Falke S, Hilgenfeld R, Redecke L, Uetrecht C. Processing of the SARS-CoV pp1a/ab nsp7-10 region. Biochem J. 2020;477(5):1009–19. doi:10.1042/BCJ20200029. PMID: 32083638; PMCID: PMC7078746.
  • Ferreira JC, Rabeh WM. Biochemical and biophysical characterization of the main protease, 3-chymotrypsin-like protease (3CLpro) from the novel coronavirus SARS-CoV 2. Sci Rep. 2020;10(1):22200. doi:10.1038/s41598-020-79357-0. PMID: 33335206; PMCID: PMC7747600.
  • Jo S, Kim S, Kim DY, Kim MS, Shin DH. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J Enzyme Inhib Med Chem. 2020;35(1):1539–44. doi:10.1080/14756366.2020.1801672. PMID: 32746637; PMCID: PMC7470085.
  • Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res. 2016;96:59–126. doi:10.1016/bs.aivir.2016.08.008. Epub 2016 Sep 14. PMID: 27712628; PMCID: PMC7112286.
  • van Oosterhout C, Hall N, Ly H, Tyler KM. COVID-19 evolution during the pandemic - Implications of new SARS-CoV-2 variants on disease control and public health policies. Virulence. 2021;12(1):507–8. doi:10.1080/21505594.2021.1877066. PMID: 33494661; PMCID: PMC7849743.
  • Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet V, Chenevier-Gobeaux C, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–24. doi:10.1126/science.abc6027. Epub 2020 Jul 13. PMID: 32661059; PMCID: PMC7402632.
  • Koyama T, Weeraratne D, Snowdon JL, Parida L. Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment. Pathogens. 2020;9(5):324. PMID: 32357545; PMCID: PMC7281497. doi:10.3390/pathogens9050324.
  • Zhu Z, Liu G, Meng K, Yang L, Liu D, Meng G. Rapid spread of mutant alleles in worldwide SARS-CoV-2 strains revealed by genome-wide single nucleotide polymorphism and variation analysis. Genome Biol Evol. 2021;13(2):evab015. doi:10.1093/gbe/evab015. PMID: 33512495; PMCID: PMC7883668.
  • Roe MK, Junod NA, Young AR, Beachboard DC, Stobart CC. Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19. J Gen Virol. 2021;102(3):001558. doi:10.1099/jgv.0.001558. Epub 2021 Jan 28. PMID: 33507143.
  • Yan L, Zhang Y, Ge J, Zheng L, Gao Y, Wang T, Jia Z, Wang H, Huang Y, Li M, et al. Architecture of a SARS-CoV-2 mini replication and transcription complex. Nat Commun. 2020;11(1):5874. doi:10.1038/s41467-020-19770-1. PMID: 33208736; PMCID: PMC7675986.
  • Ayipo YO, Yahaya SN, Alananzeh WA, Babamale HF, Mordi MN. Pathomechanisms, therapeutic targets and potent inhibitors of some beta-coronaviruses from bench-to-bedside. Infect Genet Evol. 2021;93:104944. doi:10.1016/j.meegid.2021.104944. Epub ahead of print. PMID: 34052418; PMCID: PMC8159710.
  • Grum-Tokars V, Ratia K, Begaye A, Baker SC, Mesecar AD. Evaluating the 3C-like protease activity of SARS-Coronavirus: recommendations for standardized assays for drug discovery. Virus Res. 2008;133(1):63–73. doi:10.1016/j.virusres.2007.02.015. Epub 2007 Mar 29. PMID: 17397958; PMCID: PMC4036818.
  • Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300(5626):1763–7. doi:10.1126/science.1085658. Epub 2003 May 13. PMID: 12746549.
  • Hilgenfeld R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. Febs J. 2014;281(18):4085–96. doi:10.1111/febs.12936. Epub 2014 Aug 11. PMID: 25039866; PMCID: PMC7163996.
  • Needle D, Lountos GT, Waugh DS. Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity. Acta Crystallogr D Biol Crystallogr. 2015;71(Pt 5):1102–11. doi:10.1107/S1399004715003521. Epub 2015 Apr 24. PMID: 25945576; PMCID: PMC4427198.
  • Joshi S, Joshi M, Degani MS. Tackling SARS-CoV-2: proposed targets and repurposed drugs. Future Med Chem. 2020;12(17):1579–601. doi:10.4155/fmc-2020-0147. Epub 2020 Jun 22. PMID: 32564623; PMCID: PMC7307730.
  • Zhang D, Chen J, Deng L, Mao Q, Zheng J, Wu J, Zeng C, Li Y. Evolutionary selection associated with the multi-function of overlapping genes in the hepatitis B virus. Infect Genet Evol. 2010;10(1):84–8. doi:10.1016/j.meegid.2009.10.006. Epub 2009 Oct 29. PMID: 19879378.
  • Goyal B, Goyal D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb Sci. 2020;22(6):297–305. doi:10.1021/acscombsci.0c00058. Epub 2020 May 27. PMID: 32402186; PMCID: PMC7252589.
  • Hsu MF, Kuo CJ, Chang KT, Chang HC, Chou CC, Ko TP, Shr HL, Chang GG, Wang AH, Liang PH. Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem. 2005;280(35):31257–66. doi:10.1074/jbc.M502577200. Epub 2005 Mar 23. PMID: 15788388; PMCID: PMC8062786.
  • Muramatsu T, Takemoto C, Kim YT, Wang H, Nishii W, Terada T, Shirouzu M, Yokoyama S. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc Natl Acad Sci U S A. 2016; Nov 15113(46):12997–3002. doi:10.1073/pnas.1601327113. Epub 2016 Oct 31. PMID: 27799534; PMCID: PMC5135343.
  • Macchiagodena M, Pagliai M, Procacci P. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chem Phys Lett. 2020;750:137489. doi:10.1016/j.cplett.2020.137489. Epub 2020 Apr 18. PMID: 32313296; PMCID: PMC7165110.
  • Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, Yu J, Kang M, Song Y, Xia J, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177–9. doi:10.1056/NEJMc2001737. Epub 2020 Feb 19. PMID: 32074444; PMCID: PMC7121626.
  • Kneller DW, Phillips G, Weiss KL, Pant S, Zhang Q, O’Neill HM, Coates L, Kovalevsky A. Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography. J Biol Chem. 2020;295(50):17365–73. doi:10.1074/jbc.AC120.016154. Epub 2020 Oct 15. PMID: 33060199; PMCID: PMC7832724.
  • Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368(6489):409–12. doi:10.1126/science.abb3405. Epub 2020 Mar 20. PMID: 32198291; PMCID: PMC7164518.
  • Hsu JT, Kuo CJ, Hsieh HP, Wang YC, Huang KK, Lin CP, Huang PF, Chen X, Liang PH. Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett. 2004;574(1-3):116–20. doi:10.1016/j.febslet.2004.08.015. PMID: 15358550; PMCID: PMC7134601.
  • Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. J Med Chem. 2016;59(14):6595–628. doi:10.1021/acs.jmedchem.5b01461. Epub 2016 Feb 29. PMID: 26878082; PMCID: PMC7075650.
  • Wei P, Fan K, Chen H, Ma L, Huang C, Tan L, Xi D, Li C, Liu Y, Cao A, et al. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochem Biophys Res Commun. 2006;339(3):865–72. doi:10.1016/j.bbrc.2005.11.102. Epub 2005 Nov 28. PMID: 16329994; PMCID: PMC7092940.
  • McGovern SL, Shoichet BK. Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem. 2003;46(14):2895–907. doi:10.1021/jm0300330. PMID: 12825931.
  • Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PD. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 2005;68(1):36–42. doi:10.1016/j.antiviral.2005.07.002. PMID: 16115693; PMCID: PMC7114321.
  • Qin GW, Xu RS. Recent advances on bioactive natural products from Chinese medicinal plants. Med Res Rev. 1998;18(6):375–82. PMID: 9828038. doi:10.1002/(sici)1098-1128(199811)18:6 < 375::aid-med2 > 3.0.co;2-8.
  • Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res. 2005;67(1):18–23. doi:10.1016/j.antiviral.2005.02.007. PMID: 15885816; PMCID: PMC7114104.
  • Chen CN, Lin CP, Huang KK, Chen WC, Hsieh HP, Liang PH, Hsu JT. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3’-digallate (TF3). Evid Based Complement Alternat Med. 2005;2(2):209–15. doi:10.1093/ecam/neh081. Epub 2005 Apr 7. PMID: 15937562; PMCID: PMC1142193.
  • Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, Kim CY, Park KH, Lee WS, Ryu YB. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem. 2016;31(1):23–30. doi:10.3109/14756366.2014.1003215. Epub 2015 Feb 16. PMID: 25683083.
  • Hartini Y, Saputra B, Wahono B, Auw Z, Indayani F, Adelya L, Namba G, Hariono M. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. Results Chem. 2021;3:100087. doi:10.1016/j.rechem.2020.100087. Epub 2020 Dec 25. PMID: 33520632; PMCID: PMC7832947.
  • Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, Nguyen TT, Park SJ, Chang JS, Park KH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem. 2010;18(22):7940–7. doi:10.1016/j.bmc.2010.09.035. Epub 2010 Sep 19. PMID: 20934345; PMCID: PMC7126309.
  • Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361(9374):2045–6. PMID: 12814717; PMCID: PMC7112442. doi:10.1016/S0140-6736(03)13615-X.
  • Tahir Ul Qamar M, Maryam A, Muneer I, Xing F, Ashfaq UA, Khan FA, Anwar F, Geesi MH, Khalid RR, Rauf SA, Siddiqi AR. Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus. Sci Rep. 2019;9(1):1433. doi:10.1038/s41598-018-38450-1. PMID: 30723263; PMCID: PMC6363786.
  • Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41. doi:10.1016/j.ddtec.2004.11.007. PMID: 24981612.
  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23. doi:10.1021/jm020017n. PMID: 12036371.
  • Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 2015;55(2):460–73. doi:10.1021/ci500588j. Epub 2015 Feb 2. PMID: 25558886.
  • Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, Mubarak MS. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother Res. 2020;34(10):2471–92. doi:10.1002/ptr.6700. Epub 2020 Apr 17. PMID: 32248575.
  • Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766–88. doi:10.1016/j.apsb.2020.02.008. Epub 2020 Feb 27. PMID: 32292689; PMCID: PMC7102550.
  • Barth A, Hovhannisyan A, Jamalyan K, Narimanyan M. Antitussive effect of a fixed combination of Justicia adhatoda, Echinacea purpurea and Eleutherococcus senticosus extracts in patients with acute upper respiratory tract infection: A comparative, randomized, double-blind, placebo-controlled study. Phytomedicine. 2015;22(13):1195–200. doi:10.1016/j.phymed.2015.10.001. Epub 2015 Oct 21. PMID: 26598919.
  • El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel-Daim MM, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules. 2020;10(3):352. PMID: 32106571; PMCID: PMC7175350. doi:10.3390/biom10030352.
  • Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand RPB, Aparna SR, Mangalapandi P, Samal A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci Rep. 2018;8(1):4329. doi:10.1038/s41598-018-22631-z. PMID: 29531263; PMCID: PMC5847565.
  • Muhseen ZT, Hameed AR, Al-Hasani HMH, Ahmad S, Li G. Computational Determination of Potential Multiprotein Targeting Natural Compounds for Rational Drug Design Against SARS-COV-2. Molecules. 2021;26(3):674. PMID: 33525411; PMCID: PMC7865386. doi:10.3390/molecules26030674.
  • Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N, Tripathi YB. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struct Dyn. 2020;27:1–14. Epub ahead of print. PMID: 32851919; PMCID: PMC7484581. doi:10.1080/07391102.2020.1810778.
  • Yepes-Pérez AF, Herrera-Calderon O, Sánchez-Aparicio JE, Tiessler-Sala L, Maréchal JD, Cardona-G W. Investigating potential inhibitory effect of Uncaria tomentosa (Cat’s Claw) against the Main Protease 3CLpro of SARS-CoV-2 by molecular modeling. Evid Based Complement Alternat Med. 2020;2020:4932572. doi:10.1155/2020/4932572. PMID: 33029165; PMCID: PMC7532411.
  • Min KR, Hwang BY, Lim HS, Kang BS, Oh GJ, Lee J, Kang SH, Lee KS, Ro JS, Kim Y. (-)-Epiafzelechin: cyclooxygenase-1 inhibitor and anti-inflammatory agent from aerial parts of Celastrus orbiculatus. Planta Med. 1999;65(5):460–2. doi:10.1055/s-2006-960813. PMID: 10418338.
  • Sumalatha M, Munikishore R, Rammohan A, Gunasekar D, Kumar KA, Reddy KK, Azad R, Reddanna P, Bodo B. Isoorientin, a Selective inhibitor of cyclooxygenase-2 (COX-2) from the tubers of Pueraria tuberosa. Nat Prod Commun. 2015;10(10):1703–4. Pmid: 26669106.
  • Yuan HL, Zhao YL, Qin XJ, Liu YP, Yu HF, Zhu PF, Jin Q, Yang XW, Luo XD. Anti-inflammatory and analgesic activities of Neolamarckia cadamba and its bioactive monoterpenoid indole alkaloids. J Ethnopharmacol. 2020;260:113103. doi:10.1016/j.jep.2020.113103. Epub 2020 Jun 20. PMID: 32569718.
  • Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, Garcia Yagüe AJ, Lastra D, Manda G, Rojo AI, et al. Can activation of NRF2 be a strategy against COVID-19? Trends Pharmacol Sci. 2020;41(9):598–610. doi:10.1016/j.tips.2020.07.003. Epub 2020 Jul 14. PMID: 32711925; PMCID: PMC7359808.
  • Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017;1863(2):585–97. doi:10.1016/j.bbadis.2016.11.005. Epub 2016 Nov 4. PMID: 27825853.
  • Falade VA, Adelusi TI, Adedotun IO, Abdul-Hammed M, Lawal TA, Agboluaje SA. In silico investigation of saponins and tannins as potential inhibitors of SARS-CoV-2 main protease (Mpro). In Silico Pharmacol. 2021;9(1):9. doi:10.1007/s40203-020-00071-w. PMID: 33425648; PMCID: PMC7786323.
  • Majumder R, Mandal M. Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach. J Biomol Struct Dyn. 2020; 27:1–16. Epub ahead of print. PMID: 32897138; PMCID: PMC7544942. doi:10.1080/07391102.2020.1817787.
  • Tian R, Yang W, Xue Q, Gao L, Huo J, Ren D, Chen X. Rutin ameliorates diabetic neuropathy by lowering plasma glucose and decreasing oxidative stress via Nrf2 signaling pathway in rats. Eur J Pharmacol. 2016;771:84–92. doi:10.1016/j.ejphar.2015.12.021. Epub 2015 Dec 10. PMID: 26688570.
  • Yan C, Sun W, Wang X, Long J, Liu X, Feng Z, Liu J. Punicalagin attenuates palmitate-induced lipotoxicity in HepG2 cells by activating the Keap1-Nrf2 antioxidant defense system. Mol Nutr Food Res. 2016;60(5):1139–49. doi:10.1002/mnfr.201500490. Epub 2016 Apr 14. PMID: 26989875.
  • Celik O, Celik N, Aydin S, Baysal B, Aydin S, Saglam A, Gursu Y, Dalkilic S, Ulas M, Ozcil MD, et al. Combating sars-cov-2 through lipoxins, proteasome, caveolin and nuclear factor-κb pathways in non-pregnant and pregnant populations. Cell Mol Biol (Noisy-le-Grand). 2020;66(3):221–9. PMID: 32538775. doi:10.14715/cmb/2020.66.3.36.
  • Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. J Biomol Struct Dyn. 2020; 3:1–16. Epub ahead of print. PMID: 33140695; PMCID: PMC7663460. doi:10.1080/07391102.2020.1841680.
  • Pan J, Li X, Guo F, Yang Z, Zhang L, Yang C. Ginkgetin attenuates cerebral ischemia-reperfusion induced autophagy and cell death via modulation of the NF-κB/p53 signaling pathway. Biosci Rep. 2019;39(9):BSR20191452. doi:10.1042/BSR20191452.PMID: 31420372; PMCID: PMC6732367.
  • Woo ER, Lee JY, Cho IJ, Kim SG, Kang KW. Amentoflavone inhibits the induction of nitric oxide synthase by inhibiting NF-kappaB activation in macrophages. Pharmacol Res. 2005;51(6):539–46. doi:10.1016/j.phrs.2005.02.002. PMID: 15829434.
  • Mandal A, Jha AK, Hazra B. Plant products as inhibitors of Coronavirus 3CL protease. Front Pharmacol. 2021;12:583387. doi:10.3389/fphar.2021.583387. PMID: 33767619; PMCID: PMC7985176.
  • Li M, Shi A, Pang H, Xue W, Li Y, Cao G, Yan B, Dong F, Li K, Xiao W, et al. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol. 2014;156:210–5. Epub 2014 Sep 8. PMID: 25219601. doi:10.1016/j.jep.2014.08.031.
  • Golodetz KS. 3CL protease inhibitor NLC-001 added to COVID-19-focused joint venture between Todos medical and NLC pharma; 2020. Available from: https://www.globenewswire.com/news-release/2020/09/17/2095292/0/en/3CL-Protease-Inhibitor-NLC-001-Added-to-COVID-19-focused-Joint-Venture-Between-Todos-Medical-and-NLC-Pharma.html. [Accessed July 7, 2021].
  • Naidu AS. 2000. Natural food antimicrobial systems. Boca Raton (FL): CRC Press. ISBN 0-8493-2047-X.
  • Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35(1):145–51. doi:10.1080/14756366.2019.1690480. PMID: 31724441; PMCID: PMC6882434.
  • Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One. 2020;15(10):e0240653. doi:10.1371/journal.pone.0240653. PMID: 33057452; PMCID: PMC7561147.
  • Rutwick Surya U, Praveen N. A molecular docking study of SARS-CoV-2 main protease against phytochemicals of Boerhavia diffusa Linn. for novel COVID-19 drug discovery. VirusDis. 2021;32(1):46–9. Epub ahead of print. PMID: 33758772; PMCID: PMC7971947. doi:10.1007/s13337-021-00683-6.
  • Buzzini P, Arapitsas P, Goretti M, Branda E, Turchetti B, Pinelli P, Ieri F, Romani A. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev Med Chem. 2008;8(12):1179–87. doi:10.2174/138955708786140990. PMID: 18855732.
  • Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol. 2017;174(11):1244–62. doi:10.1111/bph.13630. Epub 2016 Oct 21. PMID: 27646690; PMCID: PMC5429339.
  • Khalifa I, Zhu W, Mohammed HHH, Dutta K, Li C. Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CLpro: An in-silico approach with 19 structural different hydrolysable tannins. J Food Biochem. 2020; 11:e13432. doi:10.1111/jfbc.13432. Epub ahead of print. PMID: 32783247; PMCID: PMC7435556.
  • Silva RM, Pereira LD, Véras JH, Vale CR, Chen-Chen L, Santos SD. Protective effect and induction of DNA repair by Myrciaria cauliflora seed extract and pedunculagin on cyclophosphamide-induced genotoxicity. Mutat Res Genet Toxicol Environ Mutagen. 2016;810:40–7. doi:10.1016/j.mrgentox.2016.10.001. Epub 2016 Oct 7. PMID: 27776690.
  • Chiou WC, Chen JC, Chen YT, Yang JM, Hwang LH, Lyu YS, Yang HY, Huang C. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Biochem Biophys Res Commun. 2021;(20):32299–3. doi:10.1016/j.bbrc.2020.12.106.Epub ahead of print. PMID: 33454058; PMCID: PMC7787066.
  • Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–93. doi:10.1038/s41586-020-2223-y. Epub 2020 Apr 9. PMID: 32272481.
  • Torres-León C, Ventura-Sobrevilla J, Serna-Cock L, Ascacio-Valdés JA, Contreras-Esquivel J, Aguilar CN. Pentagalloyl-glucose (PGG): a valuable phenolic compound with functional properties. J Funct Foods. 2017;37:176–89. doi:10.1016/j.jff.2017.07.045.
  • Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, Zhang H, Luo H, Zhu L, Jiang P, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78(20):11334–11339. doi:10.1128/JVI.78.20.11334.2004. PMID: 15452254; PMCID: PMC521800.
  • Granja A, Frias I, Neves AR, Pinheiro M, Reis S. Therapeutic potential of epigallocatechin gallate Nanodelivery Systems. Biomed Res Int. 2017;2017:5813793. doi:10.1155/2017/5813793. Epub 2017 Jul 16. PMID: 28791306; PMCID: PMC5534279.
  • Zuo G, Li Z, Chen L, Xu X. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antiviral Res. 2007;76(1):86–92. doi:10.1016/j.antiviral.2007.06.001. Epub 2007 Jun 26.
  • Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, Park J. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease In Vitro. Evid Based Complement Alternat Med. 2020;2020:5630838. doi:10.1155/2020/5630838. PMID: 32963564; PMCID: PMC7499281.
  • Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019;24(6):1123. PMID: 30901869; PMCID: PMC6470739. doi:10.3390/molecules24061123.
  • Bafna K, Krug RM, Montelione GT. Structural similarity of SARS-CoV2 Mpro and HCV NS3/4A proteases suggests new approaches for identifying existing drugs useful as COVID-19 therapeutics. ChemRxiv [Preprint]. 2020; Apr 21 doi:10.26434/chemrxiv.12153615. PMID: 32511291; PMCID: PMC7263768.
  • Nguyen TT, Woo HJ, Kang HK, Nguyen VD, Kim YM, Kim DW, Ahn SA, Xia Y, Kim D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol Lett. 2012;34(5):831–8. doi:10.1007/s10529-011-0845-8. Epub 2012 Feb 15. PMID: 22350287; PMCID: PMC7087583.
  • Park JY, Yuk HJ, Ryu HW, Lim SH, Kim KS, Park KH, Ryu YB, Lee WS. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem. 2017;32(1):504–15. doi:10.1080/14756366.2016.1265519. PMID: 28112000; PMCID: PMC6010046.
  • Kaur N, Singh R, Dar Z, Bijarnia RK, Dhingra N, Kaur T. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. Infect Genet Evol. 2021;89:104490. doi:10.1016/j.meegid.2020.104490. Epub 2020 Aug 1. PMID: 32745811; PMCID: PMC7395230.
  • Bastaminejad S, Bakhtiyari S. Quercetin and its relative therapeutic potential against COVID-19: A retrospective review and prospective overview. Curr Mol Med. 2021; 21(5):385–391. doi:10.2174/1566524020999200918150630.Epub ahead of print. PMID: 32957884.
  • Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. 2021;35(3):1230–6. doi:10.1002/ptr.6887. Epub 2020 Oct 9. PMID: 33034398; PMCID: PMC7675685.
  • DI Pierro F, Khan A, Bertuccioli A, Maffioli P, Derosa G, Khan S, Khan BA, Nigar R, Ujjan I, Devrajani BR. Quercetin Phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol (Torino). 2021;67(2):190–5. doi:10.23736/S1121-421X.20.02771-3. Epub 2020 Oct 5. PMID: 33016666.
  • Pan B, Fang S, Zhang J, Pan Y, Liu H, Wang Y, Li M, Liu L. Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Comput Struct Biotechnol J. 2020;18:3518–27. doi:10.1016/j.csbj.2020.11.010. Epub 2020 Nov 11. PMID: 33200026; PMCID: PMC7657012.
  • Shi J, Wei Z, Song J. Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors. J Biol Chem. 2004;279(23):24765–73. doi:10.1074/jbc.M311744200. Epub 2004 Mar 22. PMID: 15037623; PMCID: PMC7982319.
  • Hu T, Zhang Y, Li L, Wang K, Chen S, Chen J, Ding J, Jiang H, Shen X. Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure. Virology. 2009;388(2):324–34. doi:10.1016/j.virol.2009.03.034. Epub 2009 May 5. PMID: 19409595; PMCID: PMC7103376.
  • Shi J, Sivaraman J, Song J. Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease. J Virol. 2008;82(9):4620–9. doi:10.1128/JVI.02680-07. Epub 2008 Feb 27. PMID: 18305031; PMCID: PMC2293028.
  • Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S, Reyburn HT, Rizzuti B, Velazquez-Campoy A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol. 2020;164:1693–703. doi:10.1016/j.ijbiomac.2020.07.235. Epub 2020 Aug 1. PMID: 32745548; PMCID: PMC7395220.
  • Chen L, Li J, Luo C, Liu H, Xu W, Chen G, Liew OW, Zhu W, Puah CM, Shen X, et al. Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem. 2006;14(24):8295–306. doi:10.1016/j.bmc.2006.09.014. Epub 2006 Oct 12. PMID: 17046271; PMCID: PMC7125754.
  • Kushwaha PP, Singh AK, Prajapati KS, Shuaib M, Gupta S, Kumar S. Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study. Microb Pathog. 2021;157:104954. doi:10.1016/j.micpath.2021.104954. Epub 2021 May 24. PMID: 34033891; PMCID: PMC8142029.
  • Verma S, Pandey AK. Factual insights of the allosteric inhibition mechanism of SARS-CoV-2 main protease by quercetin: an in silico analysis. 3 Biotech. 2021;11(2):67. doi:10.1007/s13205-020-02630-6. Epub 2021 Jan 12. PMID: 33457176; PMCID: PMC7802979.
  • Swain SS, Singh SR, Sahoo A, Hussain T, Pati S. Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment. J Biomol Struct Dyn. 2021; 15 1–14. Epub ahead of print. PMID: 33583350; PMCID: PMC7885723. doi:10.1080/07391102.2021.1885495.
  • Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A Review. JAMA. 2020;324(8):782–93. doi:10.1001/jama.2020.12839. PMID: 32648899.
  • Conti P, Caraffa A, Gallenga CE, Ross R, Kritas SK, Frydas I, Younes A, Ronconi G. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: a promising inhibitory strategy. J Biol Regul Homeost Agents. 2020;34(6):1971–5. doi:10.23812/20-1-E. PMID: 33016027.
  • Chen JS, Alfajaro MM, Chow RD, Wei J, Filler RB, Eisenbarth SC, Wilen CB. Non-steroidal anti-inflammatory drugs dampen the cytokine and antibody response to SARS-CoV-2 infection. J Virol. 2021;95(7):e00014–21. Epub ahead of print. PMID: 33441348; PMCID: PMC8092681. doi:10.1128/JVI.00014-21.
  • Sari DRT, Cairns JRK, Safitri A, Fatchiyah F. Virtual prediction of the delphinidin-3-O-glucoside and peonidin-3-O-glucoside as anti-inflammatory of TNF-α signaling. Acta Inform Med. 2019;27(3):152–7. doi:10.5455/aim.2019.27.152-157. PMID: 31762569; PMCID: PMC6853755.
  • Hwang D, Kang MJ, Kang CW, Kim GD. Kaempferol‑3‑O‑β‑rutinoside suppresses the inflammatory responses in lipopolysaccharide‑stimulated RAW264.7 cells via the NF‑κB and MAPK pathways. Int J Mol Med. 2019;44(6):2321–8. doi:10.3892/ijmm.2019.4381. Epub 2019 Oct 22. PMID: 31661129.
  • Li J, Zhao Y, Cao L, Zheng Q, Gao J. AMPK activation of flavonoids from Psidium guajava leaves in L6 rat myoblast cells and L02 human hepatic cells. Evid Based Complement Alternat Med. 2019;2019:1–6. PMID: 31929823; PMCID: PMC6942870. doi:10.1155/2019/9209043.
  • Eldahshan OA, Abdel-Daim MM. Phytochemical study, cytotoxic, analgesic, antipyretic and anti-inflammatory activities of Strychnos nux-vomica. Cytotechnology. 2015;67(5):831–44. doi:10.1007/s10616-014-9723-2. Epub 2014 Apr 8. PMID: 24711053; PMCID: PMC4545432.
  • Tomaino A, Martorana M, Arcoraci T, Monteleone D, Giovinazzo C, Saija A. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie. 2010;92(9):1115–22. doi:10.1016/j.biochi.2010.03.027. Epub 2010 Apr 11. PMID: 20388531.
  • Choi JH, Kim KJ, Kim S. Comparative effect of quercetin and quercetin-3-O-β-d-glucoside on fibrin polymers, blood clots, and in rodent models. J Biochem Mol Toxicol. 2016;30(11):548–58. doi:10.1002/jbt.21822. Epub 2016 Jun 7. PMID: 27271803.
  • Meiers S, Kemény M, Weyand U, Gastpar R, von Angerer E, Marko D. The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J Agric Food Chem. 2001;49(2):958–62. doi:10.1021/jf0009100. PMID: 11262056.
  • Winter AN, Ross EK, Khatter S, Miller K, Linseman DA. Chemical basis for the disparate neuroprotective effects of the anthocyanins, callistephin and kuromanin, against nitrosative stress. Free Radic Biol Med. 2017;103:23–34. doi:10.1016/j.freeradbiomed.2016.12.012. Epub 2016 Dec 13. PMID: 27986528.
  • Dimitrić Marković JM, Pejin B, Milenković D, Amić D, Begović N, Mojović M, Marković ZS. Antiradical activity of delphinidin, pelargonidin and malvin towards hydroxyl and nitric oxide radicals: The energy requirements calculations as a prediction of the possible antiradical mechanisms. Food Chem. 2017;218:440–6. doi:10.1016/j.foodchem.2016.09.106. Epub 2016 Sep 17. PMID: 27719933.
  • Nagy M, Križková L, Mučaji P, Kontšeková Z, Šeršeň F, Krajčovič J. Antimutagenic activity and radical scavenging activity of water infusions and phenolics from ligustrum plants leaves. Molecules. 2009;14(1):509–18. PMID: 19169198; PMCID: PMC6253942. doi:10.3390/molecules14010509.
  • Parichatikanond W, Pinthong D, Mangmool S. Blockade of the renin-angiotensin system with delphinidin, cyanin, and quercetin. Planta Med. 2012;78(15):1626–32. doi:10.1055/s-0032-1315198. Epub 2012 Aug 7. PMID: 22872589.
  • Mencherini T, Cau A, Bianco G, Della Loggia R, Aquino RP, Autore G. An extract of Apium graveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory properties. J Pharm Pharmacol. 2007;59(6):891–7. doi:10.1211/jpp.59.6.0016. PMID: 17637182.
  • Yoshikawa M, Shimada H, Nishida N, Li Y, Toguchida I, Yamahara J, Matsuda H. Antidiabetic principles of natural medicines. II. Aldose reductase and alpha-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of myrciacitrins I and II and myrciaphenones A and B. Chem Pharm Bull (Tokyo). 1998;46(1):113–9. doi:10.1248/cpb.46.113. PMID: 9468642.
  • Jeong DM, Jung HA, Choi JS. Comparative antioxidant activity and HPLC profiles of some selected Korean thistles. Arch Pharm Res. 2008;31(1):28–33. doi:10.1007/s12272-008-1116-7. PMID: 18277604.
  • Badavath VN, Kumar A, Samanta PK, Maji S, Das A, Blum G, Jha A, Sen A. Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): a molecular docking, molecular dynamics and structure-activity relationship studies. J Biomol Struct Dyn. 2020;17:1–19. Epub ahead of print. PMID: 33200681; PMCID: PMC7682386. doi:10.1080/07391102.2020.1845800.
  • Ma J, Iida H, Jo T, Takano H, Oonuma H, Morita T, Toyo-Oka T, Omata M, Nagai R, Okuda Y, et al. Ursodeoxycholic acid inhibits endothelin-1 production in human vascular endothelial cells. Eur J Pharmacol. 2004;505(1-3):67–74. doi:10.1016/j.ejphar.2004.10.042. PMID: 15556138.
  • Snow AD, Castillo GM, Nguyen BP, Choi PY, Cummings JA, Cam J, Hu Q, Lake T, Pan W, Kastin AJ, et al. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tangles. Sci Rep. 2019;9(1):561. doi:10.1038/s41598-019-38645-0. PMID: 30728442; PMCID: PMC6365538.
  • Du Y, Lou H. Catechin and proanthocyanidin B4 from grape seeds prevent doxorubicin-induced toxicity in cardiomyocytes. Eur J Pharmacol. 2008;591(1–3):96–101. doi:10.1016/j.ejphar.2008.06.068. Epub 2008 Jun 24. PMID: 18611398.
  • Shahat AA, Ismail SI, Hammouda FM, Azzam SA, Lemière G, De Bruyne T, De Swaef S, Pieters L, Vlietinck A. Anti-HIV activity of flavonoids and proanthocyanidins from Crataegus sinaica. Phytomedicine. 1998;5(2):133–6. PMID: 23195766. doi:10.1016/S0944-7113(98)80010-X.
  • Wang C, Hwang YL, Li XM, Kim SJ, Zhu MJ, Lee JH, Jiang RH, Kim CD. Inhibition of insulin-like growth factor-1-induced sebum production by Bilobetin in cultured human sebocytes. Ann Dermatol. 2019;31(3):294–9. doi:10.5021/ad.2019.31.3.294. Epub 2019 May 1. PMID: 33911594; PMCID: PMC7992725.
  • Shen R, Yin P, Yao H, Chen L, Chang X, Li H, Hou X. Punicalin ameliorates cell pyroptosis induced by LPS/ATP through suppression of ROS/NLRP3 pathway. J Inflamm Res. 2021;14:711–8. doi:10.2147/JIR.S299163. PMID: 33707964; PMCID: PMC7943540.
  • Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite, sominone, attenuate Abeta(25-35)-induced neurodegeneration. Eur J Neurosci. 2006;23(6):1417–26. doi:10.1111/j.1460-9568.2006.04664.x. PMID: 16553605.
  • Gaurav I, Singh T, Thakur A, Kumar G, Rathee P, Kumari P, Sweta K. Synthesis, In-Vitro and In-Silico evaluation of silver nanoparticles with root extract of Withania somnifera for antibacterial activity via binding of penicillin-binding protein-4. Curr Pharm Biotechnol. 2020;21(15):1674–87. doi:10.2174/1389201021666200702152000. PMID: 32614743.
  • Lee IC, Bae JS. Anti-inflammatory effects of vicenin-2 and scolymoside on polyphosphate-mediated vascular inflammatory responses. Inflamm Res. 2016;65(3):203–12. doi:10.1007/s00011-015-0906-x. Epub 2015 Nov 30. PMID: 26621502.
  • Raphael TJ, Kuttan G. Effect of naturally occurring triterpenoids ursolic acid and glycyrrhizic acid on the cell-mediated immune responses of metastatic tumor-bearing animals. Immunopharmacol Immunotoxicol. 2008;30(2):243–55. doi:10.1080/08923970701675044. PMID: 18569082.
  • Rehman MT, AlAjmi MF, Hussain A. Natural compounds as inhibitors of SARS-CoV-2 main protease (3CLpro): A molecular docking and simulation approach to combat COVID-19. Curr Pharm Des. 2021;27(33):3577–3581. doi:10.2174/1381612826999201116195851.Epub ahead of print. PMID: 33200697.
  • Gyebi GA, Ogunro OB, Adegunloye AP, Ogunyemi OM, Afolabi SO. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): an in silico screening of alkaloids and terpenoids from African medicinal plants. J Biomol Struct Dyn. 2021;39(9):3396–408. doi:10.1080/07391102.2020.1764868. Epub 2020 May 18. PMID: 32367767; PMCID: PMC7256353.
  • Srivastava R, Tripathi S, Unni S, Hussain A, Haque S, Dasgupta N, Singh V, Mishra BN. Silybin B and cianidanol inhibit M pro and spike protein of SARS-CoV-2: Evidence from in silico molecular docking studies. Curr Pharm Des. 2021;27(32):3476–3489. doi:10.2174/1381612826666201210122726.Epub ahead of print. PMID: 33302853.
  • Bahadur Gurung A, Ajmal Ali M, Lee J, Abul Farah M, Mashay Al-Anazi K. Structure-based virtual screening of phytochemicals and repurposing of FDA approved antiviral drugs unravels lead molecules as potential inhibitors of coronavirus 3C-like protease enzyme. J King Saud Univ Sci. 2020;32(6):2845–53. doi:10.1016/j.jksus.2020.07.007. Epub 2020 Jul 17. PMID: 32837113; PMCID: PMC7366079.
  • Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10(4):313–9. doi:10.1016/j.jpha.2020.03.009. Epub 2020 Mar 26. PMID: 32296570; PMCID: PMC7156227.
  • Padhi AK, Tripathi T. Targeted design of drug binding sites in the main protease of SARS-CoV-2 reveals potential signatures of adaptation. Biochem Biophys Res Commun. 2021;555:147–53. doi:10.1016/j.bbrc.2021.03.118. Epub 2021 Mar 26. PMID: 33813274; PMCID: PMC7997393.
  • Deshmukh MG, Ippolito JA, Zhang CH, Stone EA, Reilly RA, Miller SJ, Jorgensen WL, Anderson KS. Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure. 2021;29(8):823–33.e5. doi:10.1016/j.str.2021.06.002. Epub 2021 Jun 22. PMID: 34161756; PMCID: PMC8218531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.