317
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Flotation Performance of Low-rank Coal in the Presence of Cetyltrimethyl Ammonium Bromide

, , &
Pages 860-875 | Received 11 Nov 2017, Accepted 27 Dec 2017, Published online: 17 Jan 2018

References

  • Agar, G. E., R. Stralton-Crawly, and T. J. Bruce. 1986. Optimising the design of flotation circuits. CIM Bulletin 73:173–81.
  • Atesok, G., F. Boylu, and M. S. Çelik. 2001. Carrier flotation for desulfurization and deashing of difficult-to-float coals. Minerals Engineering 14:661–70. doi:10.1016/S0892-6875(01)00058-9.
  • Atesok, G., and M. S. Celik. 2000. A new flotation scheme for a difficult-to-float coal using pitch additive in dry grinding. Fuel 79:1509–13. doi:10.1016/S0016-2361(00)00012-0.
  • Bolat, E., S. Saǧlam, and S. Piskin. 1998. The effect of oxidation on the flotation properties of a Turkish bituminous coal. Fuel Processing Technology 55:101–05. doi:10.1016/S0378-3820(98)00039-3.
  • Bustamante, H., and G. Woods. 1984. Interaction of dodecylamine and sodium dodecyl sulphate with a low-rank bituminous coal. Colloids and Surfaces 12:381–99. doi:10.1016/0166-6622(84)80113-4.
  • Cao, Y. J., G. S. Li, J. T. Liu, H. J. Zhang, and X. Zhai. 2012. Removal of unburned carbon from fly ash using a cyclonic-static microbubble flotation column. Journal-South African Institute of Mining and Metallurgy 112:891–96.
  • Chaves, A. P., and A. S. Ruiz. 2009. Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings. International Journal of Coal Preparation and Utilization 29:289–97. doi:10.1080/19392690903558371.
  • Chen, S. J., Z. Yang, L. Chen, X. X. Tao, L. F. Tang, and H. He. 2017. Wetting thermodynamics of low rank coal and attachment in flotation. Fuel 207:214–25. doi:10.1016/j.fuel.2017.06.018.
  • Dey, S. 2012. Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview. Fuel Processing Technology 94:151–58. doi:10.1016/j.fuproc.2011.10.021.
  • Dowling, E. C., R. R. Klimpel, and F. F. Aplan. 1985. Model discrimination in the flotation of a porphyry copper ore. Minerals and Metallurgical Processing 2:87–101.
  • Feng, D., and C. Aldrich. 2005. Effect of preconditioning on the flotation of coal. Chemical Engineering Communications 192:972–83. doi:10.1080/009864490521534.
  • Jangam, S. V., M. Karthikeyan, and A. S. Mujumdar. 2011. A critical assessment of industrial coal drying technologies: Role of energy, emissions, risk and sustainability. Drying Technology 29:395–407. doi:10.1080/07373937.2010.498070.
  • Kelebek, S., U. Demir, O. Sahbaz, A. Ucar, M. Cinar, C. Karaguzel, and B. Oteyaka. 2008. The effects of dodecylamine, kerosene and pH on batch flotation of Turkey’s Tuncbilek coal. International Journal of Mineral Processing 88:65–71. doi:10.1016/j.minpro.2008.06.004.
  • Lester, E., and S. Kingman. 2004. The effect of microwave pre-heating on five different coals. Fuel 83:1941–47. doi:10.1016/j.fuel.2004.05.006.
  • Li, J. G., G. H. Zhang, T. Shang, and J. F. Zhu. 2014. Synthesis, characterization and application of a dispersant based on rosin for coal-water slurry. International Journal of Mining Science and Technology 24:695–99. doi:10.1016/j.ijmst.2014.03.025.
  • Li, Y. G., R. Honaker, J. Z. Chen, and L. J. Shen. 2016. Effect of particle size on the reverse flotation of subbituminous coal. Powder Technology 301:323–30. doi:10.1016/j.powtec.2016.06.019.
  • Liao, Y. F., Y. J. Cao, C. Q. Liu, and G. L. Zhu. 2015. A study of kinetics on oily-bubble flotation for a low-rank coal. International Journal of Coal Preparation and Utilization 36:151–62. doi:10.1080/19392699.2015.1068172.
  • Liu, J., T. Mak, Z. A. Zhou, and Z. Xu. 2002. Fundamental study of reactive oily-bubble flotation. Minerals Engineering 15:667–76. doi:10.1016/S0892-6875(02)00158-9.
  • Liu, S. Y., X. Y. Liu, Z. Y. Guo, Y. T. Liu, J. Y. Guo, and S. H. Zhang. 2016. Wettability modification and restraint of moisture re-adsorption of lignite using cationic gemini surfactant. Colloids & Surfaces A Physicochemical & Engineering Aspects 508:286–93. doi:10.1016/j.colsurfa.2016.08.073.
  • Liu, X. C., L. Feng, L. L. Song, X. H. Wang, and Y. Zhang. 2014. Effect of NaOH treatment on combustion performance of Xilinhaote lignite. International Journal of Mining Science and Technology 24:51–55. doi:10.1016/j.ijmst.2013.12.009.
  • Liu, X. Y., S. Y. Liu, M. Q. Fan, and L. Zhang. 2017a. Decrease of hydrophilicity of lignite using CTAB: Effects of adsorption differences of surfactant onto mineral composition and functional groups. Fuel 197:474–81. doi:10.1016/j.fuel.2017.02.065.
  • Liu, X. Y., S. Y. Liu, M. Q. Fan, and J. R. Zhao. 2017b. Calorimetric study of the wettability properties of low-rank coal in the presence of CTAB. Journal of Thermal Analysis & Calorimetry 130: 202–2033. doi: 10.1007/s10973-017-6518-7.
  • Marsalek, R., J. Pospisil, and B. Taraba. 2011. The influence of temperature on the adsorption of CTAB on coals. Colloids & Surfaces A Physicochemical & Engineering Aspects 383:80–85. doi:10.1016/j.colsurfa.2011.01.012.
  • Ni, C., G. Y. Xie, M. G. Jin, Y. L. Peng, and W. C. Xia. 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technology 292:210–16. doi:10.1016/j.powtec.2016.02.004.
  • Ozkan, S. G. 2012. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel 93:576–80. doi:10.1016/j.fuel.2011.10.032.
  • Peng, Y. L., L. Liang, J. K. Tan, J. Sha, and G. Y. Xie. 2015. Effect of flotation reagent adsorption by different ultra-fine coal particles on coal flotation. International Journal of Mineral Processing 142:17–21. doi:10.1016/j.minpro.2014.12.005.
  • Polat, H., and S. Chander. 1998. Interaction between physical and chemical variables in the flotation of low rank coals. Minerals & Metallurgical Processing 15:41–47.
  • Popli, K., M. Sekhavat, A. Afacan, S. Dubljevic, Q. Liu, and V. Prasad. 2015. Dynamic modeling and real-time monitoring of froth flotation. Minerals 5:570–91. doi:10.3390/min5030510.
  • Qian, C. M., M. Zhou, J. H. Wei, P. H. Ye, and X. Yang. 2014. Pyrolysis and co-pyrolysis of lignite and plastic. International Journal of Mining Science and Technology 24:137–41. doi:10.1016/j.ijmst.2013.12.023.
  • Qu, J. Z., X. X. Tao, H. He, X. Zhang, N. Xu, and B. Zhang. 2015. Synergistic effect of surfactants and a collector on the flotation of a low-rank coal. International Journal of Coal Preparation & Utilization 35:14–24. doi:10.1080/19392699.2014.904295.
  • Quast, K. B., and D. J. Readett. 1987. The surface chemistry of low rank coals. Advances in Colloid & Interface Science 27:169–87. doi:10.1016/0001-8686(87)85002-9.
  • Ralston, J., D. Fornasiero, and R. Hayes. 1999. Bubble–Particle attachment and detachment in Flotation. International Journal of Mineral Processing 56:133–64. doi:10.1016/S0301-7516(98)00046-5.
  • Sakaguchi, M., K. Laursen, H. Nakagawa, and K. Miura. 2008. Hydrothermal upgrading of LoyYang Brown coal—Effect of upgrading conditions on the characteristics of the products. Fuel Processing Technology 89:391–96. doi:10.1016/j.fuproc.2007.11.008.
  • Sarikaya, M., and G. Obzbayoglu. 1995. Flotation characteristics of oxidized coal. Fuel 74:291–94. doi:10.1016/0016-2361(95)92668-V.
  • Savitskyi, D. P. 2015. Impact of the pH on angles of contact of water wet tability of brown coal. Journal of Water Chemistry and Technology 37:155–60. doi:10.3103/S1063455X15040013.
  • Shimizu, S., M. A. Kido, T. Kiyoshima, and T. Tanaka. 2012. Characterizing frothers through critical coalescence concentration (ccc) 95-hydrophile-lipophile balance (hlb) relationship. Minerals 2:208–27. doi:10.3390/min2030208.
  • Sivrikaya, O. 2014. Cleaning study of a low-rank lignite with DMS, Reichert spiral and flotation. Fuel 119:252–58. doi:10.1016/j.fuel.2013.11.061.
  • Sripriya, R., P. V. T. Rao, and R. B. Choudhury. 2003. Optimization of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques. International Journal of Mineral Processing 68:109–27. doi:10.1016/S0301-7516(02)00063-7.
  • Stonestreet, P., and J. P. Franzidis. 1988. Reverse flotation of coal—A novel way for the beneficiation of coal fines. Minerals Engineering 1:343–49. doi:10.1016/0892-6875(88)90024-6.
  • Sun, S. C. 1954. Effect of oxidation of coals on their flotation properties. Transactions of the American Institute of Mining and Metallurgical Engineer 6:396–401.
  • Vamvuka, D., and V. Agridiotis. 2001. The effect of chemical reagents on lignite flotation. International Journal of Mineral Processing 61:209–24. doi:10.1016/S0301-7516(00)00034-X.
  • Wang, S. W., and X. X. Tao. 2017. Combination of viscosity regulator and frother to enhance low-rank coal flotation performance. Separation Science & Technology 52:2463–72. doi:10.1080/01496395.2017.1341531.
  • Wen, B. F., W. C. Xia, and J. M. Sokolovic. 2017. Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals. Powder Technology 319:1–11. doi:10.1016/j.powtec.2017.06.030.
  • Willson, W. G., D. Walsh, and W. B. Irwinc. 1997. Overview of low-rank coal (LRC) drying. International Journal of Coal Preparation and Utilization 18:1–15. doi:10.1080/07349349708905135.
  • Woodburn, E., S. A. Flynn, B. A. Cressey, and G. Cressey. 1984. The effect of froth stability on the beneficiation of low-rank coal by flotation. Powder Technology 40:167–77. doi:10.1016/0032-5910(84)85062-7.
  • Xia, W. C., G. Y. Xie, and Y. L. Peng. 2015. Recent advances in beneficiation for low rank coals. Powder Technology 277:206–21. doi:10.1016/j.powtec.2015.03.003.
  • Xia, W. C., J. G. Yang, and C. Liang. 2013. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technology 237:1–8. doi:10.1016/j.powtec.2013.01.017.
  • Xia, W. C., J. G. Yang, and B. Zhu. 2012. Flotation of oxidized coal dry-ground with collector. Powder Technology 228:324–26. doi:10.1016/j.powtec.2012.05.043.
  • Xia, W. C., C. L. Zhou, and Y. L. Peng. 2017. Enhancing flotation cleaning of intruded coal dry-ground with heavy oil. Journal of Cleaner Production 161:591–97. doi:10.1016/j.jclepro.2017.05.193.
  • Ye, Y., S. M. Khandrika, and J. D. Miller. 1989. Induction-time measurements at a particle bed. International Journal of Mineral Processing 25:221–40. doi:10.1016/0301-7516(89)90019-7.
  • Yekeen, N., M. A. Manan, A. K. Idris, and A. M. Samil. 2017. Influence of surfactant and electrolyte concentrations on surfactant Adsorption and foaming characteristics. Journal of Petroleum Science and Engineering 149:612–22. doi:10.1016/j.petrol.2016.11.018.
  • Yoon, R. H., and J. L. Yordan. 1991a. Induction time measurements for the quartz-amine flotation system. Journal of Colloid and Interface Science 141:374–83. doi:10.1016/0021-9797(91)90333-4.
  • Yoon, R. H., and J. L. Yordan. 1991b. The critical rupture thickness of thin water films on hydrophobic surfaces. Journal of Colloid and Interface Science 146:565–72. doi:10.1016/0021-9797(91)90220-3.
  • Yuan, X. M., B. I. Palsson, and K. S. E. Forssberg. 1996. Statistical interpretation of flotation kinetics for a complex sulphide ore. Minerals Engineering 9:429–42. doi:10.1016/0892-6875(96)00028-3.
  • Zhang, H. J., J. T. Liu, Y. J. Cao, and Y. T. Wang. 2013. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder Technology 246:658–63. doi:10.1016/j.powtec.2013.06.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.