320
Views
14
CrossRef citations to date
0
Altmetric
Articles

Microbial Degradation of Coal into a Value Added Product

&
Pages 1-19 | Received 12 Jul 2017, Accepted 02 Mar 2018, Published online: 28 Mar 2018

References

  • Baddi, G. A., M. Hafidi, J. Cegarra, J. A. Alburquerque, J. Gonzalvez, V. Gilard, and J. C. Revel. 2004. Characteriztion of fulvic acids by elemental and spectroscopic (FTIR and 13C-NMR) analyses during composting of olive mill waste plus straw. Bioresource Technology 93 (3):285–90. doi:10.1016/j.biortech.2003.10.026.
  • Fallgren, P. H., S. Jin, C. Zeng, Z. Ren, A. Lu, and P. J. S. Colberg. 2013. Comparison of coal rank for enhanced biogenic natural gas production. International Journal of Coal Geology 115:92–96. doi:10.1016/j.coal.2013.01.014.
  • Fong, S. S., L. Seng, W. N. Chong, J. Asing, and M. Nor. 2006. Md, ASbtM. Pauzan, Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner. Journal of Brazilian Chemical Society 17 (3):582–87. doi:10.1590/S0103-50532006000300023.
  • Gallagher, L. K., A. W. Glossner, L. L. Landkamer, L. A. Figueroa, K. W. Figueroa, and M. J. Munakatta- Marr. 2013. The effect of coal oxidation on methane production and microbial community structure in Powder River basin coal. International Journal of Coal Geology 115:71–78. doi:10.1016/j.coal.2013.03.005.
  • Giovanela, M., E. Parlanti, E. J. Soriano- Sierra, M. S. Soldi, and M. M. D. Sierra. 2004. Elemental compositions, FTIR spectra and thermal behavior of sedimentary fulvic and humic acids from aquatic and terrestrial environments. Geochemistry Journal 38:255–64.
  • Harris, S. H., R. L. Smith, and C. E. Barker. 2008. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals. International Journal of Coal Geology 76:46–51. doi:10.1016/j.coal.2008.05.019.
  • Helal, A. A., G. A. Murad, and A. A. Helal. 2011. Characterization of different humic materials by various analytical techniques. Arabian Journal of Chemistry 4 (1):51–54. doi:10.1016/j.arabjc.2010.06.018.
  • Hofrichter, M., M. Bublitz, and M. Fritsche. 1997. Fungal attack on coalII. Solubilization of low-rank coal by filamentous fungi. Fuel Processing Technology 52 (1–3):55–64. doi:10.1016/S0378-3820(97)00015-5.
  • Hofrichter, M., and R. M. Fakoussa. 2004. Microbial degradation and modification of coal. In Lignin, humic substances and coal, editor A. Steinbüchel, 399–425. Weinheim, Germany: Wiley-VCH.
  • Huang, Z., C. Liers, R. Ullrich, M. Hofrichter, and M. A. Urynowicz. 2013. Depolymerization & solubilisation of chemically pre-treated powder river basin subbituminous coal by manganese peroxidase (MnP) from Bjerkandera adusta. Fuel 112:295–301. doi:10.1016/j.fuel.2013.04.081.
  • Jones, E. J. P., M. A. Voytek, M. D. Corum, and W. H. Orem. 2010a. Stimulation of methane generation from non-productive coal by addition of nutrients or a microbial consortium. Applied Environmental Microbiology 76 (21):7013–22. doi:10.1128/AEM.00728-10.
  • Jones, E. J. P., M. A. Voytek, M. D. Corum, and W. H. Orem. 2010b. Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium. Applied Environmental Microbiology 76:7013–22. doi:10.1128/AEM.00728-10.
  • Jones, E. J. P., M. A. Voytek, P. D. Warwick, M. D. Warwick, C. A. Cohn, J. E. Bunnell, A. C. Clark, and W. H. Orem. 2008. Bioassay for estimating the biogenic methane-generating potential of coal samples. International Journal of Coal Geology 76 (1–2):138–50. doi:10.1016/j.coal.2008.05.011.
  • Li, D., P. Hendry, and M. Faiz. 2008. A survey of the microbial populations in some Australian coalbed methane reservoirs. International Journal of Coal Geology 76 (1–2):14–24. doi:10.1016/j.coal.2008.04.007.
  • Machnikowska, H. K., and A. P. Podgórska. 2002. Microbial degradation of low rank coals. Fuel Processing Technology 77:17–23. doi:10.1016/S0378-3820(02)00064-4.
  • Manoj, B. 2014. Bioprocessing of Indian coals by microorganisms: An investigation. Journal of Environmental Research and Development 9 (1):209–15.
  • Manoj, B. 2015. Biodegradation of coal minerals by Gluconic acid and its effect on the stacking structure of carbon: An investigation. Bioremediation and Biodegradation 6 (4). doi: 10.4172/2155-6199.1000306
  • Manoj, B., and P. Narayanan. 2013. Study of changes to the organic functional groups of a high volatile bituminous coal during organic acid treatment process by FTIR spectroscopy. Journal of Mineral Material Characterisation Engineering 1:39–43. doi:10.4236/jmmce.2013.12008.
  • Orazio, C., S. Kapila, and S. Manahan. 1983. High performance liquid chromatographic determination of phenols as phenolates in a complex mixture. Journal Chromatography 262:434–40. doi:10.1016/S0021-9673(01)88135-8.
  • Orem, W. H., M. A. Voytek, E. J. Jones, H. E. Lerch, A. L. Bates, M. D. Corum, P. D. Warwick, and A. C. Clark. 2010. Organic intermediates in the anerobic biodegradation of coal to methane under laboratory conditions. Organic Geochemistry 41 (9):997–1000. doi:10.1016/j.orggeochem.2010.03.005.
  • Osawa, Y., and J. W. Shih. 1971. Infrared spectra of Japanese coal: The absorption bands at 3450 and 1260 cm-1. Fuel 50 (1):53–57. doi:10.1016/S0016-2361(71)81019-0.
  • Pissolato, T. M., P. Schossler, A. M. Geller, and E. B. Casramao. 1996. Identification of phenolic compounds in wastewater from coal gasification by SPE and GC/MS. Journal of High Resolution Chromatography 19:577–80. doi:10.1002/jhrc.1240191009.
  • Polman, J. K., C. R. Breckenridge, D. L. Stoner, and G. F. Andrews. 1995. Biologically derived value added products from coal. Applications Biochemical Biotechnic 54 (1–3):249–55. doi:10.1007/BF02787923.
  • Polman, J. K., D. L. Stoner, and K. M. Delezene-Briggs. 1994. Bioconversion of coal, lignin and dimethoxybenzyl alcohol by Penicillium citrinum. Journal Industrial Microbiologic Biot 13 (5):292–99. doi:10.1007/BF01569731.
  • Ralph, J. P., and D. E. Catcheside. 1996. Recovery and analysis of solubilised brown coal from cultures of wood-rot fungi. Journal of Microbiol Meth 27 (1):1–9. doi:10.1016/0167-7012(96)00917-7.
  • Ralph, J. P., and D. E. Catcheside. 1997. Transformations of low rank coal by Phanerochaete chrysosporium and other wood-rot fungi. Fuel Processing Technology 52 (1–3):79–93. doi:10.1016/S0378-3820(97)00018-0.
  • Ralph, J. P., and D. E. Catcheside. 1998. Influence of culture parameters on extracellular peroxidase activity and transformation of low-rank coal by Phanerochaete chrysosporium. Applied Microbiology and Biotechnology 49 (4):438–44. doi:10.1007/s002530051195.
  • Scott, C. D., T. C. Scott, and C. A. Woodward. 1993. The chemical modification of enzymes to enhance solubilisation in organic solvents for interaction with coal. Fuel 72 (12):1695–700. doi:10.1016/0016-2361(93)90357-8.
  • Scott, C. D., G. W. Stranberg, and S. N. Lewis. 1986. Microbial solubilisation of coal. Biotechnology Progress 2 (3):131–39. doi:10.1002/btpr.5420020307.
  • Scott, C. D., C. A. Woodward, J. E. Thompson, and S. L. Blankinship. 1990. Coal solubilisation by enhanced enzyme activity in organic solvents. Applied Biochemistry and Biotechnology 24 (1):799–815. doi:10.1007/BF02920296.
  • Shi, K., X. Tao, F. Hong, H. He, Y. Ji, and J. Li. 2012. Mechanism of oxidation of low rank coal by nitric acid. Journal of Coal Science Engineering 18 (4):396–99. doi:10.1007/s12404-012-0411-6.
  • Shinozuka, T., A. Ito, T. Yamaguchi, and Y. Sugimoto. 2004. Characteristic of Fulvic acid by the decomposition of weathered coal in hot compressed water. Journal of Japanese Instrumentation Energy 83 (7):500–06. doi:10.3775/jie.83.500.
  • Sobkowiak, M., and P. C. Painter. 1992. Determination of the aliphatic aliphatic and aromatic CH contents of coal by FTIR. Studies of coal extracts. Fuel 71 (10):1105–25. doi:10.1016/0016-2361(92)90092-3.
  • Strandberg, G., and S. Lewis. 1987. Solubilization of coal by an extracellular product from Streptomyces setonii 75Vi2. Journal of Indian Microbiology 1 (6):371–75. doi:10.1007/BF01569334.
  • Szepesy, L., L. Podmaniczky, and I. Szebenyi. 1987. Group type separation and determination of phenolic compounds in coal-derived products by HPLC. Chromatographia 23 (8):579–82. doi:10.1007/BF02324868.
  • Valero, N., L. Gomez, M. Pantoja, and R. Ramirez. 2014. Production of humic substances through coal solubilizing bacteria. Brazilian Journal of Microbiology 45 (3):911–18. doi:10.1590/S1517-83822014000300021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.