227
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Effects of Diesel and 2-Octanol on Water-carrying Properties and Ultrafine Coal Flotation

, , , , , & show all
Pages 98-107 | Received 29 Nov 2017, Accepted 12 Mar 2018, Published online: 20 Mar 2018

References

  • Akbarzadeh, Y., M. Rezaei, A. A. Babaluo, A. Charchi, H. R. Azimi, and Y. Bahluli. 2008. Microstructure, permeability and rheological behavior of lost foam refractory coatings. Surface Coatings Technology 202:4636–43.
  • Armed, H. A. M., and J. Drzymala. 2004. Effect of flotation procedure and composition of reagents on yield of a difficult-to-float coal. Fizykochem Probl Miner Probl Miner Process 38:53–63.
  • Arnold, B. J., and F. F. Aplan. 1989. The hydrophobicity of coal macerals. Fuel 68:651–58.
  • Benzaazoua, M., and M. Kongolo. 2003. Physico-chemical properties of tailing slurries during environmental desulphurization by froth flotation. International Journal of Mineral Processing 69:221–34.
  • Castro, S., A. Lopez-Valdivieso, and J. S. Laskowski. 2016. Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Processing 148:48–58.
  • Cavallaro, J. A., and A. W. Deurbrouck. 1977. An overview of coal preparation. Washington, DC: ACS Publications.
  • Chaudhuri, S., V. K. Kalyani, T. G. Charan, S. Kumari, and A. Sinha. 2014. Improved Collector for Beneficiation of Low-Volatile Medium Ash Clean Coal Fines by Froth Flotation. International Journal Coal Preparative Utilization 34:321–31.
  • Chen, H., T. Namioka, and K. Yoshikawa. 2011. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge. Applications Energy 88:5032–41.
  • Cui, L., L. An, and H. Jiang. 2008. A novel process for preparation of an ultra-clean superfine coal–oil slurry. Fuel 87:2296–303.
  • Dey, S. 2012. Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview. Fuel Processing Technology 94:151–58.
  • Du, Z., M. P. Bilbao-Montoya, B. P. Binks, E. Dickinson, R. Ettelaie, and B. S. Murray. 2003. Outstanding stability of particle-stabilized bubbles. Langmuir 19:3106–08.
  • Duan, J., D. Fornasiero, and J. Ralston. 2003. Calculation of the flotation rate constant of chalcopyrite particles in an ore. International Journal of Mineral Processing 72:227–37.
  • Fraunholcz, N. 2004. Separation of waste plastics by froth flotation––A review, part I. Mineral Engineering 17:261–68.
  • Fuerstenau, M. C., J. D. Miller, and M. C. Kuhn. 1985. Chemistry of flotation. New York, NY: Society of Mining Engineers of AIME.
  • G V, J., T. Goulding, and J. A. A. Bradbury. 1983. Inorganic foam. Washington, DC: Google Patents.
  • Ghaffari, A., and M. Karimi. 2012. Numerical investigation on multiphase flow simulation in a centrifugal flotation cell. International Journal Coal Preparative Utilization 32:120–29.
  • Gupta, A. K., P. K. Banerjee, and A. Mishra. 2009. Influence of chemical parameters on selectivity and recovery of fine coal through flotation. International Journal of Mineral Processing 92:1–6.
  • Hosten, C., and A. Tezcan. 1990. The influence of frother type on the flotation kinetics of a massive copper sulphide ore. Mineral Engineering 3:637–40.
  • Hu, Y., and X. Liu. 2003. Chemical composition and surface property of kaolins. Mineral Engineering 16:1279–84.
  • Kawatra, S. K., and T. C. Eisele. 1992. Recovery of pyrite in coal flotation: Entrainment or hydrophobicity. Mineral & Metallurgical Processing 9:57–61.
  • Li, G., L. Deng, Y. Cao, B. Wang, J. Ran, and H. Zhang. 2017. Effect of sodium chloride on fine coal flotation and discussion based on froth stability and particle coagulation. International Journal of Mineral Processing 169:47–52.
  • Liang, L., J. Tan, Z. Li, Y. Peng, and G. Xie. 2016. Coal flotation improvement through hydrophobic flocculation induced by polyethylene oxide. International Journal Coal Preparative Utilization 36:139–50.
  • Liao, Y., Y. Cao, S. Huang, J. He, X. Zhang, S. Li, and S. Shao. 2015. Water-carrying properties of flotation frothers and its effect on fine coal flotation. International Journal Coal Preparative Utilization 35:88–98.
  • Liu, Y., S. Lei, T. Huang, M. Ji, Y. Li, and Y. Fan. 2017. Research on mineralogy and flotation for coal-series kaolin. Applied Clay Science 136:37–42.
  • Małysa, E., K. Małysa, and J. Czarnecki. 1987. A method of comparison of the frothing and collecting properties of frothers. Colloids and Surfaces 23:29–39.
  • Mondal, K., and M. K. Mohanty. 2009. A theoretical approach to coal flotation washability correlation. International Journal Coal Preparative Utilization 29:140–51.
  • Neethling, S. J., and J. J. Cilliers. 2002. The entrainment of gangue into a flotation froth. International Journal of Mineral Processing 64:123–34.
  • Patil, D. P., B. K. Parekh, and E. B. Klunder. 2010. A novel approach for improving column flotation of fine and coarse coal. International Journal Coal Preparative Utilization 30:173–88.
  • Polat, M., H. Polat, and S. Chander. 2003. Physical and chemical interactions in coal flotation. International Journal of Mineral Processing 72:199–213.
  • Quanzhi, T., W. Yongtian, and L. I. Guosheng. 2017. Application of special collectors and flotation column for beneficiation low rank coal slimes. Physicochemical Problems of Mineral Processing 53:553–68.
  • Raghavan, P., S. Chandrasekhar, and A. D. Damodaran. 1997. Value addition of paper coating grade kaolins by the removal of ultrafine coloring impurities. International Journal of Mineral Processing 50:307–16.
  • Rong, R. X., and G. J. Lyman. 1985. Computational techniques for coal washery optimization-parallel gravity and flotation separation. Coal Preparative 2:51–67.
  • Rubio, J., F. Capponi, R. T. Rodrigues, and E. Matiolo. 2007. Enhanced flotation of sulfide fines using the emulsified oil extender technique. International Journal of Mineral Processing 84:41–50.
  • Sabah, E., and Z. E. Erkan. 2006. Interaction mechanism of flocculants with coal waste slurry. Fuel 85:350–59.
  • Seitz, R. A., and S. K. Kawatra. 1986. The role of nonpolar oils as flotation reagents. Chapter 19:171–80.
  • Sripriya, R., P. V. T. Rao, and B. R. Choudhury. 2003. Optimisation of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques. International Journal of Mineral Processing 68:109–27.
  • Tao, D., B. Li, S. Johnson, and B. K. Parekh. 2002. A flotation study of refuse pond coal slurry. Fuel Processing Technology 76:201–10.
  • Vapur, H., O. Bayat, and M. Uçurum. 2010. Coal flotation optimization using modified flotation parameters and combustible recovery in a Jameson cell. Energy Convers Managed 51:1891–97.
  • Wang, Y., Y. Cao, G. Li, Y. Liao, Y. Xing, and X. Gui. 2017. Combined effect of chemical composition and spreading velocity of collector on flotation performance of oxidized coal. Powder Technology 325:1–10.
  • Xia, W., C. Ni, and G. Xie. 2016. Effective flotation of lignite using a mixture of dodecane and 4-dodecylphenol (DDP) as a collector. International Journal Coal Preparative Utilization 36:262–71.
  • Xie, W., Y. He, Y. Wang, Z. Ge, S. Wang, and H. Wang. 2017. Comparison of flotation behavior of middling coal ground by wet-milling with different media. Particle Sciences Technology 35:616–20.
  • Xing, Y., X. Gui, Y. Cao, Y. Wang, M. Xu, D. Wang, and C. Li. 2017. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technology 305:166–73.
  • Xu, Z., J. Liu, J. W. Choung, and Z. Zhou. 2003. Electrokinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing 68:183–96.
  • Yoon, R. H., and G. H. Luttrell. 1989. The effect of bubble size on fine particle flotation. Mineral Procesing Extractive Metall Reviews 5:101–22.
  • Zhang, M., Y. Cao, Y. Chen, and W. Yu. 2017. Influence of controlled dispersion on rheology of swelling clay suspensions in the presence of coal flotation reagents. Physicochemical Problems of Mineral Processing 53:1148–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.