282
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Influence of TiO2 addition on the structure and metallurgical properties of coke

, , , , , , , & show all
Pages 521-537 | Received 28 Apr 2018, Accepted 02 Jul 2018, Published online: 21 Aug 2018

References

  • Bai, Y., S. Zhu, K. Luo, M. Gao, L. Yan, and F. Li. 2016. Coal char gasification in H2O/CO2: Release of alkali and alkaline earth metallic species and their effects on reactivity. Applied Thermal Engineering 112:156–63. doi:10.1016/j.applthermaleng.2016.10.044.
  • Dong, S., N. Paterson, S. G. Kazarian, D. R. Dugwell, and R. Kandiyoti. 2007. Characterization of tuyere-level core-drill coke samples from blast furnace operation. Energy & Fuels 21(6):3446–54. doi:10.1021/ef7003656.
  • Drobniak, A., and M. Mastalerz. 2006. Chemical evolution of miocene wood: Example from the belchatow brown coal deposit, central poland. International Journal of Coal Geology 66:157–78. doi:10.1016/j.coal.2005.06.004.
  • Ghosh, B., B. K. Sahoo, O. S. Niyogi, B. Chakraborty, K. K. Manjhi, T. K. Das, and S. K. Das. 2017. Coke structure evaluation for BF coke making. International Journal of Coal Preparation and Utilization. doi:10.1080/19392699.2017.1340883.
  • Gornostayev, S. S., and J. J. Härkki. 2007. Graphite crystals in blast furnace coke. Carbon 45(6):1145–51. doi:10.1016/j.carbon.2007.02.033.
  • Grigore, M., R. Sakurovs, and D. French. 2009. Coke gasification: The influence and behavior of inherent catalytic mineral matter. Energy & Fuels 23:2075–85. doi:10.1021/ef8006728.
  • Grigore, M., R. Sakurovs, D. French, and V. Sahajwalla. 2006. Influence of mineral matter on coke reactivity with carbon dioxide. ISIJ International 46:503–12. doi:10.2355/isijinternational.46.503.
  • Grigore, M., R. Sakurovs, D. French, and V. Sahajwalla. 2007. Effect of carbonisation conditions on mineral matter in coke. ISIJ International 47:62–66. doi:10.2355/isijinternational.47.62.
  • Gupta, S., D. French, R. Sakurovs, M. Grigore, H. Sun, and T. Cham. 2008. Minerals and iron-making reactions in blast furnaces. Progress in Energy and Combustion Science 34:155–97. doi:10.1016/j.pecs.2007.04.001.
  • Gupta, S., V. Sahajwalla, J. Burgo, P. Chaubal, and T. Youmans. 2005. Carbon structure of coke at high temperatures and its influence on coke fines in blast furnace dust. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 36:385–94. doi:10.1007/s11663-005-0067-3.
  • Gupta, S., Z. Ye, R. Kanniala, O. Kerkkonen, and V. Sahajwalla. 2013. Coke graphitization and degradation across the tuyere regions in a blast furnace. Fuel 113:77–85. doi:10.1016/j.fuel.2013.05.074.
  • Hilding, T., S. Gupta, V. Sahajwalla, B. Bo, and W. Jan-Olov. 2005. Degradation behaviour of a high CSR coke in an experimental blast furnace: Effect of carbon structure and alkali reactions. ISIJ International 45(7):1041–50. doi:10.2355/isijinternational.45.1041.
  • Ibarra, J., E. Munoz, and R. Moliner. 1996. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry 24:725–35. doi:10.1016/0146-6380(96)00063-0.
  • Kazuberns, K., S. Gupta, and M. Grigore. 2008. Coke mineral transformations in the experimental blast furnace. Energy & Fuels 22:3407–19. doi:10.1021/ef800295d.
  • Kim, B. C., S. Gupta, D. French, R. Sakurovs, and V. Sahajwalla. 2009. Effect of thermal treatment on coke reactivity and catalytic iron mineralogy. Energy & Fuels 23:3694–02. doi:10.1021/ef900229p.
  • Lahijani, P., Z. A. Zainal, A. R. Mohamed, and M. Mohammadi. 2013. CO2 gasification reactivity of biomass char: Catalytic influence of alkali, alkaline earth and transition metal salts. Bioresource Technology 144:288–95. doi:10.1016/j.biortech.2013.06.059.
  • Li, K., R. Khanna, J. Zhang, Z. Liu, V. Sahajwalla, and T. Yang. 2014. The evolution of structural order, microstructure and mineral matter of metallurgical coke in a blast furnace: A review. Fuel 133(5):194–215. doi:10.1016/j.fuel.2014.05.014.
  • Lievens, C., D. Ci, Y. Bai, L. Ma, R. Zhang, and J. Chen. 2013. A study of slow pyrolysis of one low rank coal via pyrolysis–GC/MS. Fuel Processing Technology 116:85–93. doi:10.1016/j.fuproc.2013.04.026.
  • Lizzio, A., A. Piotrowski, and L. Radovic. 1988. Effect of oxygen chemisorption on char gasification reactivity profiles obtained by thermogravimetric analysis. Fuel 67:1691–95. doi:10.1016/0016-2361(88)90218-9.
  • Nomura, S. 2014. Reaction behavior of Ca-loaded highly reactive coke. ISIJ International 54:2533–40. doi:10.2355/isijinternational.54.2533.
  • Ohtsuka, Y., and K. Asami. 1996. Ion-exchanged calcium from calcium carbonate and low-rank coals: High catalytic activity in steam gasification. Energy & Fuels 10:431–35. doi:10.1021/ef950174f.
  • Ohtsuka, Y., and A. Tomita. 1986. Calcium catalyzed steam gasification of Yallourn brown coal. Fuel 65:1653–57. doi:10.1016/0016-2361(86)90264-4.
  • Oikonomopoulos, I. K., M. Perraki, N. Tougiannidis, T. Perraki, M. J. Frey, and P. A. Antoniadis. 2013. Comparative study on structural differences of xylite and matrix lignite lithotypes by means of FT-IR, XRD, SEM and TGA analyses: An example from the Neogene Greek lignite deposits. International Journal of Coal Geology 115:1–12. doi:10.1016/j.coal.2013.04.002.
  • Okolo, G. N., R. C. Everson, H. W. Neomagus, M. J. Roberts, and R. Sakurovs. 2015. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques. Fuel 141:293–304. doi:10.1016/j.fuel.2014.10.046.
  • Qiu, N., H. Li, Z. Jin, and Y. Zhu. 2007. Temperature and time effect on the concentrations of free radicals in coal: Evidence from laboratory pyrolysis experiments. International Journal of Coal Geology 69:220–28. doi:10.1016/j.coal.2006.04.002.
  • Qiu, S. X., S. F. Zhang, Q. Y. Zhang, G. B. Qiu, and L. Y. Wen. 2017. Effects of iron compounds on pyrolysis behavior of coals and metallurgical properties of resultant cokes. Journal of Iron and Steel Research International 24:1169–76. doi:10.1016/s1006-706x(18)30014-1.
  • Radović, L. R., P. L. Walker, and R. G. Jenkins. 1983. Importance of carbon active sites in the gasification of coal chars. Fuel 62:849–56. doi:10.1016/0016-2361(83)90041-8.
  • Saikia, B. K., R. K. Boruah, and P. K. Gogoi. 2007. XRD and FT-IR investigations of sub-bituminous Assam coals. Bulletin of Materials Science 30:421–26. doi:10.1007/s12034-007-0068-8.
  • Sato, H., J. W. Patrick, and A. Walker. 1998. Effect of coal properties and porous structure on tensile strength of metallurgical coke. Fuel 77:1203–08. doi:10.1016/s0016-2361(98)00019-2.
  • Song, Y., W. He, Q. Ma, Y. Tian, and X. Lan. 2017. Effect of binder composition on the preparation of formed coke with low-rank coal. International Journal of Coal Preparation and Utilization. doi:10.1080/19392699.2017.1363738.
  • Sonibare, O. O., T. Haeger, and S. F. Foley. 2010. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 35:5347–53. doi:10.1016/j.energy.2010.07.025.
  • Suzuki, T., K. Inoue, and Y. Watanabe. 1989. Steam pulsed gasification of Na2CO3 or Fe(NO3)3 loaded Yallourn coal char. Fuel 68:626–30. doi:10.1016/0016-2361(89)90163-4.
  • Suzuki, T., H. Ohme, and Y. Watanabe. 1992. Mechanism of sodium–Catalyzed carbon dioxide gasification of carbon investigation by pulse and TPD techniques. Energy & Fuels 6:336–43. doi:10.1021/ef00034a002.
  • Valente, N. J. M., C. E. C. Laginhas, P. J. M. Carrott, and M. M. L. Ribeiro. 2011. Production of activated carbons from almond shell. Fuel Processing Technology 92:234–40. doi:10.1016/j.fuproc.2010.03.024.
  • Vogt, D., and M. Depoux. 1990. Coke reactivity prediction by texture analysis. Fuel Processing Technology 24:99–105. doi:10.1016/0378-3820(90)90046-U.
  • Wiktorsson, L. P., and W. Wanzl. 2000. Kinetic parameters for coal pyrolysis at low and high heating rates-a comparison of data from different laboratory equipment. Fuel 79:701–16. doi:10.1016/s0016-2361(99)00138-6.
  • Wu, X., J. Tang, and J. Wang. 2016. A new active site/intermediate kinetic model for K2CO3-catalyzed steam gasification of ash-free coal char. Fuel 165:59–67. doi:10.1016/j.fuel.2015.10.034.
  • Xie, K. 2002. Structure and reactivity of coal. Beijing: Science.
  • Zhang, S. F., W. Liu, S. X. Qiu, M. R. Yang, M. J. Li and H. J. Peng. 2015a. Carbonization of coals mixed iron ore fines and gasification of resulting iron coke with CO2: Transformation of iron minerals and coke properties. In Characterization of Minerals, Metals, and Materials 2015, ed. B. W. Li, J. Li, S. N. Monteiro, Z. W. Peng, and M. M. Zhang, 523–31. Springer: Berlin.
  • Zhang, S. F., H. J. Peng, X. Zhang, W. Liu, L. Y. Wen, and G. B. Qiu. 2015b. Structure characterization and metallurgical properties of the chars formed by devolatilization of lump coals. Fuel Processing Technology 129:174–82. doi:10.1016/j.fuproc.2014.09.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.