266
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Thermal characteristics and kinetic analysis of coal-oxygen reaction under the condition of inert gas

& ORCID Icon
Pages 846-862 | Received 23 May 2019, Accepted 19 Sep 2019, Published online: 19 Oct 2019

References

  • Arendt, P., and K. H. V. Heek. 1981. Comparative investigations of coal pyrolysis under inert gas and H2 at low and high heating rates and pressures up to 10 MPa. Fuel 60:779–87. doi:10.1016/0016-2361(81)90138-1.
  • Arisoy, A., and B. Beamish. 2015. Reaction kinetics of coal oxidation at low temperatures. Fuel 159:412–17. doi:10.1016/j.fuel.2015.06.054.
  • Battistutta, E., P. van Hemert, M. Lutynski, H. Bruining, and K.-H. Wolf. 2010. Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal. International Journal of Coal Geology 84:39–48. doi:10.1016/j.coal.2010.08.002.
  • Bo, L., C. Gang, Z. Hui, and C. Sheng. 2014. Development of non-isothermal TGA–DSC for kinetics analysis of low temperature coal oxidation prior to ignition. Fuel 118:385–91. doi:10.1016/j.fuel.2013.11.011.
  • Chao, J. N., H. Yang, Y. Wu, H. Zhang, J. Lv, W. Dong, N. Xiao, K. Zhang, and C. Xu. 2016. The investigation of the coal ignition temperature and ignition characteristics in an oxygen-enriched FBR. Fuel 183:351–58. doi:10.1016/j.fuel.2016.06.089.
  • Chen, Y., S. Mori, and W. P. Pan. 1996. Studying the mechanism of ignition of coal particles by TG-DTA. Thermochimica Acta 275:149–58. doi:10.1016/0040-6031(95)02727-0.
  • Deng, H., H. H. Yi, X. L. Tang, P. Ning, and Q. F. Yu. 2011. Adsorption of CO2 and N2 on coal-based activated carbon. Advanced Materials Research 204-210:1250–53. doi: 10.4028/www.scientific.net/AMR.204-210.1250.
  • Deng, J., L.-F. Ren, L. Ma, C.-K. Lei, G.-M. Wei, and W.-F. Wang. 2018. Effect of oxygen concentration on low-temperature exothermic oxidation of pulverized coal. Thermochimica Acta 667:102–10. doi:10.1016/j.tca.2018.07.012.
  • Dijk, P. V., J. Zhang, J. Wang, C. Kuenzer, and K. H. Wolf. 2011. Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining information to previous remote sensing estimates. International Journal of Coal Geology 86:108–19. doi:10.1016/j.coal.2011.01.009.
  • Keefer, R. F., and K. S. Sajwan. 1993. Trace elements in coal and coal combustion residues. CRC Press.Boca Raton.
  • Kim, Y. G., J. D. Kim, B. H. Lee, J. H. Song, and C. H. Jeon. 2010. Experimental investigation into combustion characteristics of two sub-bituminous coals in O2/N2 and O2/CO2 environments. Energy & Fuels 24:83–90. doi:10.1021/ef100978n.
  • Kong, B., Z. H. Li, Y. L. Yang, Z. Liu, and D. C. Yan. 2017. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China. Environmental Science and Pollution Research 24:23453–70. doi:10.1007/s11356-017-0209-6.
  • Lardelli, M. 2009. Mining the data on coal. Science 324:880–81. doi:10.1126/science.324_880c.
  • Lin, J., T. Ren, Y. Cheng, J. Nemcik, and G. Wang. 2019. Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study. Energy 116115. doi: 10.1016/j.energy.2019.116115.
  • Lin, J., T. Ren, G. Wang, P. Booth, and J. Nemcik. 2018. Experimental investigation of N2 injection to enhance gas drainage in CO2-rich low permeable seam. Fuel 215:665–74. doi:10.1016/j.fuel.2017.11.129.
  • Liu, H., and F. Wang. 2019. Research on N2-inhibitor-water mist fire prevention and extinguishing technology and equipment in coal mine goaf. PLoS ONE 14:e0222003. doi:10.1371/journal.pone.0222003.
  • Liu, H., F. Wang, and T. Ren. 2019. Research on the characteristics of coal-oxygen reaction in the lean-oxygen environment caused by methane. Energy & Fuels.33: 9215−9223. doi: 10.1021/acs.energyfuels.9b01753
  • Melody, S. M., and F. H. Johnston. 2015. Coal mine fires and human health: What do we know? International Journal of Coal Geology 152:1–14. doi:10.1016/j.coal.2015.11.001.
  • Morgan, P. A., S. D. Robertson, and J. F. Unsworth. 1986. Combustion studies by thermogravimetric analysis: 1. Coal oxidation. Fuel 65:1546–51. doi:10.1016/0016-2361(86)90331-5.
  • Ottiger, S., R. Pini, G. Storti, and M. Mazzotti. 2008. Measuring and modeling the competitive adsorption of CO2, CH4, and N2 on a Dry Coal. Langmuir the Acs Journal of Surfaces & Colloids 24:9531–40. doi:10.1021/la801350h.
  • Pandey, J., N. K. Mohalik, R. K. Mishra, A. Khalkho, D. Kumar, and V. K. Singh. 2015. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires. Fire Technology 51:227–45. doi:10.1007/s10694-012-0302-9.
  • Qi, G., D. Wang, K. Zheng, Y. Tang, and X. Lu. 2016. Smoldering combustion of coal under forced air flow: Experimental investigation. Journal of Fire Sciences 34:267–88. doi:10.1177/0734904116643331.
  • Qin, B., Y. Lu, Y. Li, and D. Wang. 2014. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control. Advanced Powder Technology 25:1527–33. doi:10.1016/j.apt.2014.04.010.
  • Qin, B., H. Wang, J. Yang, and L. Liu. 2016. Large-area goaf fires: A numerical method for locating high-temperature zones and assessing the effect of liquid nitrogen fire control. Environmental Earth Sciences 75:1396. doi:10.1007/s12665-016-6173-5.
  • Qu, L. N., D. Z. Song, and B. Tan. 2018. Research on the critical temperature and stage characteristics for the spontaneous combustion of different metamorphic degrees of coal. International Journal of Coal Preparation and Utilization 38:221–36. doi:10.1080/19392699.2016.1226170.
  • Ren, J., C. Xie, X. Guo, Z. Qin, J.-Y. Lin, and Z. Li. 2014. Combustion characteristics of coal gangue under an atmosphere of coal mine methane. Energy & Fuels 28:3688–95. doi:10.1021/ef500446j.
  • Rodilla, I., M. L. Contreras, and A. Bahillo. 2018. Thermogravimetric and mass spectrometric (TG-MS) analysis of sub-bituminous coal-energy crops blends in N2, air and CO2/O2 atmospheres. Fuel 215:506–14. doi:10.1016/j.fuel.2017.09.102.
  • Sergey, V., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520:1–19. doi:10.1016/j.tca.2011.03.034.
  • Sergey, V., and C. Wight. 1998. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. International Reviews in Physical Chemistry 17:407–33. doi:10.1080/014423598230108.
  • Shao, Z., D. Wang, Y. Wang, X. Zhong, X. Tang, and X. Hu. 2015. Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China. Natural Hazards 75:1833–52. doi:10.1007/s11069-014-1401-3.
  • Slovák, V., and B. Taraba. 2010. Effect of experimental conditions on parameters derived from TG-DSC measurements of low-temperature oxidation of coal. Journal of Thermal Analysis & Calorimetry 101:641–46. doi:10.1007/s10973-010-0878-6.
  • Stracher, G. B. 2007. Coal fires burning around the world: Opportunity for innovative and interdisciplinary research. GSA Today : a Publication of the Geological Society of America 17:,36–37.
  • Stracher, G. B. 2011. Chapter 7 - Environmental and health impacts of coal fires. Elsevier B.V. Amsterdam.
  • Tang, Y. 2016. Inhibition of low-temperature oxidation of bituminous coal using a novel phase-transition aerosol. Energy & Fuels 30:9303–09. doi:10.1021/acs.energyfuels.6b02040.
  • Wang, C. A., X. Zhang, Y. Liu, and D. Che. 2012. Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Applied Energy 97:264–73. doi:10.1016/j.apenergy.2012.02.011.
  • Wang, S., K. Luo, X. Wang, and Y. Sun. 2016. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue: An important part of Chinese emission inventories. Environmental Pollution 209:107–13. doi:10.1016/j.envpol.2015.11.026.
  • Xu, Y. L., D. M. Wang, L. Y. Wang, X. X. Zhong, and T. X. Chu. 2012. Experimental research on inhibition performances of the sand-suspended colloid for coal spontaneous combustion. Safety Science 50:822–27. doi:10.1016/j.ssci.2011.08.026.
  • Yip, K., E. Ng, C. Z. Li, J. I. Hayashi, and H. Wu. 2011. A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars. Proceedings of the Combustion Institute 33:1755–62. doi:10.1016/j.proci.2010.07.073.
  • Yuan, L. M., and A. C. Smith. 2011. CO and CO2 emissions from spontaneous heating of coal under different ventilation rates. International Journal of Coal Geology 88:24–30. doi:10.1016/j.coal.2011.07.004.
  • Zhang, C., J. Wang, and Z. Zhang. 2013. Liquid carbon dioxide fire extinguishing equipments and their engendering applications. Science & Technology Review 31:44–48.
  • Zhang, L., B. Qin, B. Shi, Q. Wu, and J. Wang. 2016a. The fire extinguishing performances of foamed gel in coal mine. Natural Hazards 81:1957–69. doi:10.1007/s11069-016-2168-5.
  • Zhang, Y., J. Wang, S. Xue, Y. Wu, Z. Li, and L. Chang. 2016b. Evaluation of the susceptibility of coal to spontaneous combustion by a TG profile subtraction method. Korean Journal of Chemical Engineering 33:862–72. doi:10.1007/s11814-015-0230-8.
  • Zhang, Y., J. Wu, L. Chang, J. Wang, S. Xue, and Z. Li. 2013. Kinetic and thermodynamic studies on the mechanism of low-temperature oxidation of coal: A case study of Shendong coal (China). International Journal of Coal Geology 120:41–49. doi:10.1016/j.coal.2013.09.005.
  • Zhong, X. X., L. D. Li, Y. Chen, G. L. Dou, and H. H. Xin. 2017. Changes in thermal kinetics characteristics during low-temperature oxidation of low-rank coals under lean-oxygen conditions. Energy & Fuels 31:239–48. doi:10.1021/acs.energyfuels.6b02197.
  • Zhou, F. B., B. B. Shi, J. W. Cheng, and L. J. Ma. 2015. A new approach to control a serious mine fire with using liquid nitrogen as extinguishing media. Fire Technology 51:325–34. doi:10.1007/s10694-013-0351-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.