124
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Prediction of ash fusion temperatures of high calcium lignites originated from the Ptolemais-Amyntaio basin, North Greece

&
Pages 1304-1317 | Received 31 Jul 2019, Accepted 19 Dec 2019, Published online: 30 Dec 2019

References

  • Bryers, R. W. 1996. Fireside slagging, fouling, and high-temperature corrosion of heat transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Science 2:29–120. doi:10.1016/0360-1285(95)00012-7.
  • Chaurasia, R. C., D. Sahu, and S. Nikkam. 2018. Prediction of ash content and yield percent of clean coal in multi gravity separator using artificial neural networks. International Journal of Coal Preparation and Utilization. doi:10.1080/19392699.2018.1547282.
  • Couch, G. 1994. Understanding slagging and fouling during PF combustion. London: IEA Coal Research.
  • European Association for Coal and Lignite – EURACOAL. Accessed May 10, 2019. https://euracoal.eu/.
  • Galetakis, M., G. Alevizos, F. Pavloudakis, C. Roumpos, and C. Kavouridis. 2009. Prediction of the performance of on-line ash analysers used in the quality control process of a coal mining system. Energy Sources: Part A 31:1127–42. doi:10.1080/15567030802089078.
  • Galetakis, M., and C. Kavouridis. 1998. Quality control of lignite produced by continuous surface mining, using statistical methods. Technical Chronicles, Scientific Journal of the Technical Chamber of Greece 1&2:49–61. in Greek with English extended summary. doi:10.1016/0006-2944(75)90147-7.
  • Galetakis, M., and K. Kavouridis. 1999. Homogenization of the quality of lignite mined from the ptolemaes - Amynteon lignite basin. Technical Chronicles, Scientific Journal of the Technical Chamber of Greece 1&2:41–52. in Greek with English extended summary. doi:10.1016/0006-2944(75)90147-7.
  • Galetakis, M., and F. Pavloudakis. 2010. The effect of lignite quality variation to the efficiency of the on-line ash analyzers. International Journal of Coal Geology 80:145–56. doi:10.1016/j.coal.2009.09.002.
  • Gray, V. R. 1987. Prediction of ash fusion temperature from ash composition for some New Zealand coals. Fuel 66 (9):1230–39. doi:10.1016/0016-2361(87)90061-5.
  • Hsieh, P. Y., K.-S. Kwong, and J. Bennett. 2016. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes. Fuel Processing Technology 142,:13–26. doi:10.1016/j.fuproc.2015.09.019.
  • International Energy Agency. 2017. IEA key world energy statistics. Accessed October 21, 2017. http://www.iea.org/.
  • Jak, E. 2002. Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package. Fuel 81 (13):1655–68. doi:10.1016/S0016-2361(02)00091-1.
  • Karimi, S., E. Jorjani, S. C. Chelgani, and S. Mesroghli. 2014. Multivariable regression and adaptive neurofuzzy inference system predictions of ash fusion temperatures using ash chemical composition of us coals. Journal of Fuels 2014:1–11. doi:10.1155/2014/392698.
  • Koukouzas, N. 1998. Distribution of lignite deposits in Greece, based on the age, type, and the reserves. Mineral Wealth 106:53–68. in Greek with English abstract.
  • Liu, Y. P., M. G. Wu, and J. X. Qian. 2007. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network. Thermochimica Acta 454:64–68. doi:10.1016/j.tca.2006.10.026.
  • Lolja, S. A., H. Haxhi, R. Dhimitri, S. Drushku, and A. Malja. 2002. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes. Fuel 81 (17):2257–61. doi:10.1016/S0016-2361(02)00194-1.
  • Montgomery, D., and E. Peck. 1992. Introduction to linear regression analysis. New York: John Wiley and Sons.
  • Nadkanská, H., J. Závada, V. Olejárová, T. Bouchal, and P. Švec. 2016. The effect of an additive on the chemistry of combustion products from biomass co-combustion. SGEM VIENNA GREEN 2016 SESSIONS: Scientific conference proceedings: November 2-6, 2016, Wien, Austria. 329–336. doi:10.5593/SGEM2016/HB43/S11.042
  • Nicholls, P., and W. A. Selvig, ( appendix Ricketts E.B.). 1932. Clinker formation as related to the fusibility of coal ash. U.S. Department of Commerce, Bureau of Mines, Bulletin 364. Washington.
  • Papanicolaou, C., M. Galetakis, and A. E. Foscolos. 2005. Quality characteristics of Greek brown coals and their relation to the applied exploitation and utilisation methods. Energy & Fuels 19,:230–39. doi:10.1021/ef030164b.
  • Public Power Corporation. S.A. - Hellas (PPC). Accessed November 7, 2018. http://www.dei.gr/.
  • Regular Authority for Energy. Accessed November 10, 2018. http://www.rae.gr/.
  • Reid, W. T. 1984. The relation of mineral composition to slagging, fouling and erosion during and after combustion. Progress in Energy and Combustion Science 10:159–75. doi:10.1016/0360-1285(84)90100-X.
  • Stratakis, A. 2014. Estimation of the ash fusion temperatures of lignite fired in the power plant stations of Northern Greece based on their mineralogical composition. PhD Thesis, Technical University of Crete.
  • Tambe, S. S., M. Naniwadekar, S. Tiwary, A. Mukherjee, and T. B. Das. 2018. Prediction of coal ash fusion temperatures using computational intelligence based models. International Journal of Coal Science & Technology 5:486. doi:10.1007/s40789-018-0213-6.
  • Tsirambides, A., and A. Filippidis. 2012. Metallic Mineral Resources of Greece. Central European Journal of Geosciences 4 (4):641–50. doi:10.2478/s13533-012-0110-2.
  • Vamvuka, D., and E. Kakaras. 2011. Ash properties and environmental impact of various biomass and coal fuels and their blends. Fuel Processing Technology 92:570–81. doi:10.1016/j.fuproc.2010.11.013.
  • Vamvuka, D., E. Mistakidou, S. Drakonaki, A. Foskolos, and K. Kavouridis. 2001. Ash quality of beneficiated lignite from Ptolemais basin, Northern Greece. Energy & Fuels 15,:1181–85. doi:10.1021/ef0100193.
  • Vargas, S., F. J. Frandsen, and K. Dam-Johansen. 2001. Rheological properties of high-temperature melts of coal ashes and other silicates. Progress in Energy and Combustion Science 27:237–429. doi:10.1016/S0360-1285(00)00023-X.
  • Winegartner, E. C., and B. T. Rhodes. 1975. An empirical study of the relation of chemical properties to ash fusion temperatures. Journal of Engineering for Gas Turbines and Power 97 (3):395–406. doi:10.1115/1.3446018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.