216
Views
0
CrossRef citations to date
0
Altmetric
Original Article

A kinetic model approach for predicting coke reactivity index from coal and coal blend properties

, , , , , & show all
Pages 1318-1335 | Received 29 Aug 2019, Accepted 27 Dec 2019, Published online: 24 Jan 2020

References

  • Adnan, M. A., O. Muraza, S. A. Razzak, M. M. Hossain, and H. I. de Lasa. 2017. Iron oxide over silica-doped alumina catalyst for catalytic steam reforming of toluene as a surrogate tar biomass species. Energy & Fuels 31:7471–81. doi:10.1021/acs.energyfuels.7b01301.
  • Bertling, H. 1999. Coal and coke for blast furnaces. ISIJ International 39:617–24. doi:10.2355/isijinternational.39.617.
  • Díaz-Faes, E., C. Barriocanal, M. A. Díez, and R. Alvarez. 2007. Applying TGA parameters in coke quality prediction models. Journal of Analytical and Applied Pyrolysis 79:154–60. doi:10.1016/j.jaap.2006.11.001.
  • Flores, B. D., I. V. Flores, A. Guerrero, D. R. Orellana, J. G. Pohlmann, M. A. Diez, A. G. Borrego, E. Osório, and A. C. F. Vilela. 2017. Effect of charcoal blending with a vitrinite rich coking coal on coke reactivity. Fuel Processing Technology 155:97–105. doi:10.1016/j.fuproc.2016.04.012.
  • Guo, R., W.-J. Hu, Y.-H. Liang, and Q. Wang. 2016. Effects of coking coal properties on coke pore structure: Prediction models. Metallurgical Research & Technology 113:404. doi:10.1051/metal/2016018.
  • Gyul’maliev, A. M., S. G. Gagarin, Y. V. Konovalova, and I. A. Sultanguzin. 2002. Estimation of the reactivity and strength of coke based on the kinetic of its interaction with carbon dioxide. Solid Fuel Chemistry 36:33–42.
  • Karunova, E. V., A. M. Gyul’maliev, and S. G. Gagarin. 2009. Use of the petrographic model for coke quality prediction at the cherepovets iron-and-steel mill. Solid Fuel Chemistry 43:351. doi:10.3103/S0361521909060032.
  • Kurniawan, T., O. Muraza, I. A. Bakare, M. A. Sanhoob, and A. M. Al-Amer. 2018. Isomerization of n-butane over cost-effective mordenite catalysts fabricated via recrystallization of natural zeolites. Industrial & Engineering Chemistry Research 57:1894–902. doi:10.1021/acs.iecr.7b04040.
  • Li, K., R. Khanna, J. Zhang, Z. Liu, V. Sahajwalla, T. Yang, and D. Kong. 2014. The evolution of structural order, microstructure and mineral matter of metallurgical coke in a blast furnace: A review. Fuel 133:194–215. doi:10.1016/j.fuel.2014.05.014.
  • Longbottom, R. J., B. J. Monaghan, A. A. Chowdhury, M. H. Reid, G. Zhang, M. R. Mahoney, and K. Hockings. 2016. Effect of mineral matter on the reactivity of coke and its replication in a coke analogue. ISIJ International 56:1553–58. doi:10.2355/isijinternational.ISIJINT-2015-597.
  • Lyalyuk, V. P., V. A. Sheremet, A. V. Kekuh, P. I. Otorvin, A. K. Tarakanov, and D. A. Kassim. 2010. Investigation of coke reactivity effect on parameters of blast furnace operation. Metallurgical and Mining Industry 2:317–23.
  • Lyalyuk, V. P., V. P. Sokolova, E. O. Shmeltser, D. Y. Timofeeva, and V. V. Beryeza. 2014. Predicting the reactivity and hot strength of coke on the basis of ash basicity. Coke and Chemistry 57:238–44. doi:10.3103/S1068364X14060052.
  • MacPhee, T., L. Giroux, K. W. Ng, T. Todoschuk, M. Conejeros, and C. Kolijn. 2013. Small scale determination of metallurgical coke CSR. Fuel 114:229–34. doi:10.1016/j.fuel.2012.08.036.
  • Miroshnichenko, D. V. 2008. Preliminary estimation of coke’s CRI and CSR values on the basis of the physical properties of coal ash. Coke and Chemistry 51:447–50. doi:10.3103/S1068364X08110057.
  • Mizin, V. G., L. A. Zinov’eva, and S. N. Klyukin. 2009. Assessing the metallurgical coke produced at OAO NLMK. Coke and Chemistry 52:412–17. doi:10.3103/S1068364X09090087.
  • Monterroso, R., M. Fan, F. Zhang, Y. Gao, T. Popa, M. D. Argyle, B. Towler, and Q. Sun. 2014. Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification. Fuel 116:341–49. doi:10.1016/j.fuel.2013.08.003.
  • Nag, D., S. K. Haldar, P. K. Choudhary, and P. K. Banerjee. 2009. Prediction of coke CSR from ash chemistry of coal blend. International Journal of Coal Preparation and Utilization 29:243–50. doi:10.1080/19392690903218117.
  • Nasser, G. A., T. Kurniawan, T. Tago, I. A. Bakare, T. Taniguchi, Y. Nakasaka, T. Masuda, and O. Muraza. 2016. Cracking of n-hexane over hierarchical MOR zeolites derived from natural minerals. Journal of the Taiwan Institute of Chemical Engineers 61:20–25. doi:10.1016/j.jtice.2015.11.025.
  • North, L., K. Blackmore, K. Nesbitt, and M. R. Mahoney. 2018. Models of coke quality prediction and the relationships to input variables: A review. Fuel 219:446–66. doi:10.1016/j.fuel.2018.01.062.
  • Pusz, S., and R. Buszko. 2012. Reflectance parameters of cokes in relation to their reactivity index (CRI) and the strength after reaction (CSR), from coals of the Upper Silesian Coal Basin, Poland. International Journal of Coal Geology 90–91:43–49. doi:10.1016/j.coal.2011.10.008.
  • Rodero, J. I., J. Sancho-Gorostiaga, M. Ordiales, D. Fernández-González, J. Mochón, I. Ruiz-Bustinza, A. Fuentes, and L. F. Verdeja. 2015. Blast furnace and metallurgical coke’s reactivity and its determination by thermal gravimetric analysis. Ironmaking & Steelmaking 42:618–25. doi:10.1179/1743281215Y.0000000016.
  • Song, T., J. Zhang, G. Wang, H. Wang, R. Xu, Q. Pang, and C. Wang. 2018. Effect of carbonization conditions on the property and structure of bamboo char for injection in blast furnace. ISIJ International  59:442–449.
  • Stanford, C. E. 2013. 9 - Coal resources, production and use in Indonesia. In The coal handbook: Towards cleaner production, ed. D. Osborne, 200–19. Cambridge, UK: Woodhead Publishing.
  • Tiwari, H. P., P. K. Banerjee, and V. K. Saxena. 2013. A novel technique for assessing the coking potential of coals/coal blends for non-recovery coke making process. Fuel 107:615–22. doi:10.1016/j.fuel.2012.12.015.
  • Ulanovskiy, M. L. 2014. Ash basicity and the coke characteristics CRI and CSR: A review. Coke and Chemistry 57:91–97. doi:10.3103/S1068364X14030089.
  • Wang, Q., R. Guo, X.-F. Zhao, J.-F. Sun, S. Zhang, and W.-Z. Liu. 2016. A new testing and evaluating method of cokes with greatly varied CRI and CSR. Fuel 182:879–85. doi:10.1016/j.fuel.2016.05.101.
  • Yang, Y., K. Raipala, and L. Holappa. 2014. Chapter 1.1 - Ironmaking. In Treatise on process metallurgy, ed. S. Seetharaman, 2–88. Boston: Elsevier.
  • Yustanti, E. 2012. Pencampuran Batubara Coking Dengan Batubara Lignite Hasil Karbonisasi Sebagai Bahan Pembuatan Kokas. Jurnal Teknologi Pengelolaan Limbah 15:15–30.
  • Zamalloa, M., and T. A. Utigard. 1995. Characterization of industrial coke structures. ISIJ International 35:449–57. doi:10.2355/isijinternational.35.449.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.