1,066
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Preparation and characterization of activated carbon from coal by chemical activation with KOH

, , &
Pages 1477-1488 | Received 16 Sep 2019, Accepted 06 Feb 2020, Published online: 16 Feb 2020

References

  • Abdel-Ghani, N. T., G. A. El-Chaghaby, M. H. ElGammal, and E. S. A. Rawash. 2017. Optimizing the preparation conditions of activated carbons from olive cake using KOH activation. Carbon 114:752–53. doi:10.1016/j.carbon.2016.10.073.
  • Acemioglu, B. 2019. Removal of a reactive dye using NaOH-activated biochar prepared from peanut shell by pyrolysis process. International Journal of Coal Preparation and Utilization 1–23. doi:10.1080/19392699.2019.1644326.
  • Ahmadpour, A., and D. D. Do. 1996. The preparation of active carbons from coal by chemical and physical activation. Carbon 34 (4):471–79. doi:10.1016/0008-6223(95)00204-9.
  • Alcaniz-Monge, J., and M. J. Illan-Gomez. 2008. Insight into hydroxides-activated coals: Chemical or physical activation? Journal of Colloid and Interface Science 318 (1):35–41. doi:10.1016/j.jcis.2007.10.017.
  • Bailon-Garcia, E., F. Maldonado-Hodar, A. Perez-Cadenas, and F. Carrasco-Marin. 2013. Catalysts supported on carbon materials for the selective hydrogenation of citral. Catalysts 3 (4):853–77. doi:10.3390/catal3040853.
  • Chingombe, P., B. Saha, and R. J. Wakeman. 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon 43 (15):3132–43. doi:10.1016/j.carbon.2005.06.021.
  • Cuhadaroglu, D., and O. U. Uygun. 2008. Production and characterization of activated carbon from a bituminous coal by chemical activation. African Journal of Biotechnology 7 (20):3703–10.
  • Dwivedi, K. K., P. Shrivastav, M. K. Karmakar, A. K. Pramanick, and P. K. Chatterjee. 2019. A comparative study on pyrolysis characteristics of bituminous coal and low-rank coal using thermogravimetric analysis (TGA). International Journal of Coal Preparation and Utilization 1–11. doi:10.1080/19392699.2019.1566130.
  • El-Hendawy, A. N. A. 2003. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41 (4):713–22. doi:10.1016/S0008-6223(03)00029-0.
  • Elkadyl, M. F., M. M. Hussein, and M. M. Salama. 2015. Synthesis and characterization of nano-activated carbon from El Maghara coal, Sinai, Egypt to be utilized for wastewater Purification. American Journal of Applied Chemistry 3 (3):1–7. doi:10.11648/j.ajac.s.2015030301.11.
  • Erdogan, F. O., and T. Kopac. 2018. Highly effective activated carbons from Turkish–Kozlu bituminous coal by physical and KOH activation and sorption studies with organic vapors. International Journal of Chemical Reactor Engineering. doi: 10.1515/ijcre-2018-0071.
  • Everett, D. H. 1972. Manual of symbols and terminology for physicochemical quantities and units, appendix II: Definitions, terminology and symbols in colloid and surface chemistry. Pure and Applied Chemistry 31(4):577–638. doi:10.1351/pac197231040577
  • Gao, Z., Y. Zhang, N. Song, and X. Li. 2016. Biomass-derived renewable carbon materials for electrochemical energy storage. Materials Research Letters 5 (2):69–88. doi:10.1080/21663831.2016.1250834.
  • Gong, G., Q. Xie, Y. Zheng, S. Ye, and Y. F. Chen. 2009. Regulation of pore size distribution in coal-based activated carbon. New Carbon Materials 24 (2):141–46. doi:10.1016/s1872-5805(08)60043-8.
  • Himeno, S., T. Komatsu, and S. Fujita. 2005. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. Journal of Chemical & Engineering Data 50 (2):369–76. doi:10.1021/je049786x.
  • Hui, T. S., and M. A. A. Zaini. 2015. Potassium hydroxide activation of activated carbon: A commentary. Carbon Letters 16 (4):275–80. doi:10.5714/CL.2015.16.4.275.
  • Jarczewski, S., and P. Kustrowski. 2016. Mesoporous carbon materials as promising catalysts for oxidative dehydrogenation of alkanes. CHEMIK 70 (6):304–09.
  • Kalderis, D., S. Bethanis, P. Paraskeva, and E. Diamadopoulos. 2008. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technology 99 (15):6809–16. doi:10.1016/j.biortech.2008.01.041.
  • Kang, H. Y., S. S. Park, and Y. S. Rim. 2006. Preparation of activated carbon from paper mill sludge by KOH-activation. Korean Journal of Chemical Engineering 23 (6):948–53. doi:10.1007/s11814-006-0013-3.
  • Kim, B. H., A. H. Wazir, K. S. Yang, Y. H. Bang, and S. R. Kim. 2011. Molecular structure effects of the pitches on preparation of activated carbon fibers from electrospinning. Carbon Letters 12 (2):70–80. doi:10.5714/CL.2011.12.2.070.
  • Kim, D. S. 2004. Activated carbon from peach stones using phosphoric acid activation at medium temperatures. Journal of Environmental Science and Health, Part A 39 (5):1301–18. doi:10.1081/ese-120030333.
  • Lee, M., R. Cord-Ruwisch, and M. Manefield. 2010. A process for the purification of organochlorine contaminated activated carbon: Sequential solvent purging and reductive dechlorination. Water Research 44 (5):1580–90. doi:10.1016/j.watres.2009.11.004.
  • Li, D., J. Zhou, Y. Wang, Y. Tian, L. Wei, Z. Zhang, Y. Qiao, and J. Li. 2019. Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel 238:232–39. doi:10.1016/j.fuel.2018.10.122.
  • Li, L., F. Sun, N. J. Gao, L. Wang, X. Pi, and G. Zhao. 2018. Broadening the pore size of coal-based activated carbon via a washing-free chem-physical activation method for high-capacity dye adsorption. RSC Advances 8 (26):14488–99. doi:10.1039/c8ra02127a.
  • Martin, A., W. S. Loh, K. A. Rahman, K. Thu, B. Surayawan, M. I. Alhamid, and K. C. Ng. 2011. Adsorption isotherms of CH4 on activated carbon from Indonesian low grade coal. Journal of Chemical & Engineering Data 56 (3):361–67. doi:10.1021/je100495w.
  • Mataji, M., and B. Khoshandam. 2014. Benzene adsorption on activated carbon from walnut shell. Chemical Engineering Communications 201 (10):1294–313. doi:10.1080/00986445.2013.808996.
  • Nowicki, P., R. Pietrzak, and H. Wachowska. 2008. Siberian anthracite as a precursor material for microporous activated carbons. Fuel 87 (10–11):2037–40. doi:10.1016/j.fuel.2007.10.008.
  • Pak, S. H., M. J. Jeon, and Y. W. Jeon. 2016. Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal. International Biodeterioration & Biodegradation 113:195–200. doi:10.1016/j.ibiod.2016.04.019.
  • Peng, Z., Z. Guo, W. Chu, and M. Wei. 2016. Facile synthesis of high-surface-area activated carbon from coal for supercapacitors and high CO2 sorption. RSC Advances 6 (48):42019–28. doi:10.1039/c5ra26044b.
  • Serrano-Talavera, B., M. J. Munoz-Guillena, A. Linares-Solano, and C. Salinas-martinez de Lecea. 1997. Activated carbons from spanish coals. 3. Preoxidation effect on anthracite activation. Energy & Fuels 11 (4):785–91. doi:10.1021/ef960105g.
  • Sing, K. S. W., D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, and T. Siemieniewska. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry 57 (4):603–19. doi:10.1515/iupac.57.0007.
  • Sircar, S., T. C. Golden, and M. B. Rao. 1996. Activated carbon for gas separation and storage. Carbon 34 (1):1–12. doi:10.1016/0008-6223(95)00128-x.
  • Solar, C., F. Sardella, C. Deiana, R. M. Lago, A. Vallone, and K. Sapag. 2008. Natural gas storage in microporous carbon obtained from waste of the olive oil production. Materials Research 11 (4):409–14. doi:10.1590/s1516-14392008000400005.
  • Sun, F., J. Gao, Y. Yang, Y. Zhu, L. Wang, X. Pi, and Y. Qin. 2016. One-step ammonia activation of Zhundong coal generating nitrogen-doped microporous carbon for gas adsorption and energy storage. Carbon 109:747–54. doi:10.1016/j.carbon.2016.08.076.
  • Sun, J., E. J. Hippo, H. Marsh, W. S. O'Brien, and J. C. Crelling. 1997. Activated carbon produced from an Illinois basin coal. Carbon 35 (3):341–52. doi: 10.1016/S0008-6223(96)00157-1.
  • Sutcu, H., and A. A. Dural. 2006. Effect of hydroxides on carbonization of bituminous coal. Coal Preparation 26 (4):201–08. doi:10.1080/07349340601104255.
  • Teng, H., and L.-Y. Hsu Hsisheng. 1999. High-porosity carbons prepared from bituminous coal with potassium hydroxide activation. Industrial & Engineering Chemistry Research 38 (8):2947–53. doi:10.1021/ie990101+.
  • Teng, H., T. S. Yeh, and L. Y. Hsu. 1998. Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 36 (9):1387–95. doi:10.1016/s0008-6223(98)00127-4.
  • Wu, C., S. Yang, J. Cai, Q. Zhang, Y. Zhu, and K. Zhang. 2016. Activated microporous carbon derived from almond shells for high energy density asymmetric supercapacitors. ACS Applied Materials & Interfaces 8 (24):15288–96. doi:10.1021/acsami.6b02942.
  • Wu, F. C., P. H. Wu, R. L. Tseng, and R. S. Juang. 2010. Preparation of activated carbons from unburnt coal in bottom ash with KOH activation for liquid-phase adsorption. Journal of Environmental Management 91 (5):1097–102. doi:10.1016/j.jenvman.2009.12.011.
  • Youssef, A. M., A. F. Hussain, and M. Safan M. 2013. Modeling and characterization of steam-activated carbons developed from cotton stalks. Carbon Letters 14 (1):14–21. doi:10.5714/CL.2012.14.1.014.
  • Zhang, J., L. Jin, J. Cheng, and H. Hu. 2013. Preparation and applications of hierarchical porous carbons from direct coal liquefaction residue. Fuel 109:2–8. doi:10.1016/j.fuel.2012.06.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.