146
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Effects of NaCl/CaCl2 on the surface hydration and flotation of lignite particles

ORCID Icon, , , , &
Pages 1563-1581 | Received 10 Dec 2019, Accepted 28 Feb 2020, Published online: 05 Mar 2020

References

  • Acuña, S. M., and P. G. Toledo. 2011. Nanoscale repulsive forces between mica and silica surfaces in aqueous solutions. Journal of Colloid & Interface Science 361:397–99. doi:10.1016/j.jcis.2011.05.063.
  • BP. 2018a. BP statistical review of world energy. [EB/OL]. https://www.bp.com/content/dam/bp-country/zh_cn/Publications/2018SRbook.pdf.
  • BP. 2018b. BP statistical review of world energy: china energy market in 2017. [EB/OL]. https://www.bp.com/content/dam/bp-country/zh_cn/Publications/2018Chinaonepager.pdf.
  • Chen, S., L. Li, J. Qu, Q. Liu, L. Tang, X. Tao, and H. Fan. 2018. Oily bubble flotation technology combining modeling and optimization of parameters for enhancement of flotation of low-flame coal. Powder Technology 335:171–85. doi:10.1016/j.powtec.2018.04.053.
  • Chen, S., X. Tao, L. Tang, F. Dong, and D. Gui. 2019. Application of ultrasonic pretreatment for coking coal flotation and its mechanism. International Journal of Coal Preparation and Utilization 1–13. doi:10.1080/19392699.2019.1657847.
  • Dey, S. 2012. Enhancement in hydrophobicity of low rank coal by surfactants — A critical overview. Fuel Processing Technology 94:151–58. doi:10.1016/j.fuproc.2011.10.021.
  • Drost-Hansen, W. 1977. Effects of vicinal water on colloidal stability and sedimentation processes. Journal of Colloid & Interface Science 58:251–62. doi:10.1016/0021-9797(77)90142-4.
  • Gu, G., Z. Xu, K. Nandakumar, and J. Masliyah. 2003. Effects of physical environment on induction time of air-bitumen attachment. International Journal of Mineral Processing 69:235–50. doi:10.1016/S0301-7516(02)00128-X.
  • Guo, D., X. Zhang, and D. Wu. 2003. Understanding of the effect mechanism of Ca2+ on flotation and coagulation of slimes. Journal of China Coal Society 28:433–36.
  • Hiemenz, P. C., and R. Rajagopalan. 1997. Principles of colloid and surface chemistry. New York: M. Dekker.
  • Huang, H., M. Manciu, and E. Ruckenstein. 2003. The effect of surface dipoles and of the field generated by a polarization gradient on the repulsive force. Journal of Colloid & Interface Science 263:156–61. doi:10.1016/S0021-9797(03)00070-5.
  • Jia, R., G. H. Harris, and D. W. Fuerstenau. 2000. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. International Journal of Mineral Processing 58:99–118. doi:10.1016/S0301-7516(99)00024-1.
  • Li, G., L. Deng, Y. Cao, and J. Ran. 2016. Effect of NaCl on coal flotation and its mechanism. Journal of China University of Mining & Technology 45:1038–42.
  • Liu, L. 2013. Study on the hydration of coal-measured kaolinite surfaces in aqueous solutions. Huainan: Anhui University of Science and Technology. ( PhD Thesis)
  • Lu, S., and D. Wong. 1992. Interface separation principle and application. Beijing: Metallurgical Industry Press.
  • Nguyen, A. V., and H. J. Schulze. 2004. Colloidal science of flotation. Vol. 118. Boca Raton: CRC Press.
  • Ozkan, S. G. 2012. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel 93:576–80. doi:10.1016/j.fuel.2011.10.032.
  • Peng, C. 2013. Mechanism study on hydration of fine montmorillonite particles in coal slime water. Huainan: Anhui University of Science & Technology. ( Master Thesis)
  • Qu, J., X. Tao, H. He, X. Zhang, N. Xu, and B. Zhang. 2015. Synergistic effect of surfactants and a collector on the flotation of a low-rank coal. International Journal of Coal Preparation and Utilization 35:14–24. doi:10.1080/19392699.2014.904295.
  • Ran, J., G. Li, Y. Cao, and C. Liu. 2015. Influence of inorganic salt on flotation froth stability of coal fly ash. Journal of China Coal Society 40:646–51.
  • Song, S., and C. Peng. 2005. Thickness of solvation layers on nano-scale silica dispersed in water and ethanol. Journal of Dispersion Science and Technology 26:197–201. doi:10.1081/DIS-200045588.
  • Song, S., C. Peng, M. A. Gonzalez-Olivares, A. Lopez-Valdivieso, and T. Fort. 2005. Study on hydration layers near nanoscale silica dispersed in aqueous solutions through viscosity measurement. Journal of Colloid and Interface Science 287:114–20. doi:10.1016/j.jcis.2005.01.066.
  • Song, S., and Y. Zhang. 2005. Viscosity method for the determination of the thickness of solvation layers near particles dispersed in a liquid. Surface Review & Letters 12:457–62. doi:10.1142/S0218625X05007293.
  • Tripathy, T., and B. R. De. 2006. Flocculation: a new way to treat the waste water. Journal of Physical Sciences 10:93–127.
  • Valle-Delgado, J. J., J. A. Molina-Bolívar, F. Galisteo-González, M. J. Gálvez-Ruiz, A. Feiler, and M. W. Rutland. 2005. Hydration forces between silica surfaces: experimental data and predictions from different theories. Journal of Chemical Physics 123:21–33. doi:10.1063/1.1954747.
  • Wills, B. A., and J. A. Finch. 2015. Wills’ mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Cambridge: Butterworth-Heinemann.
  • Xia, W., C. Ni, and G. Xie. 2016. Effective flotation of lignite using a mixture of dodecane and 4-dodecylphenol (DDP) as a collector. International Journal of Coal Preparation & Utilization 36 (5):262–71. doi:10.1080/19392699.2015.1113956.
  • Xia, W., J. Yang, and C. Liang. 2013. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technology 237:1–8. doi:10.1016/j.powtec.2013.01.017.
  • Xia, W., C. Zhou, and Y. Peng. 2017. Enhancing flotation cleaning of intruded coal dry-ground with heavy oil. Journal of Cleaner Production 161:591–97. doi:10.1016/j.jclepro.2017.05.193.
  • Yang, C. Y., and Y. Zhao. 2004. Influences of hydration force and elastic strain energy on the stability of solid film in a very thin solid-on-liquid structure. The Journal of Chemical Physics 120:5366–76. doi:10.1063/1.1648014.
  • Zahn, D., and O. Hochrein. 2003. Computational study of interfaces between hydroxyapatite and water. Physical Chemistry Chemical Physics 5:4004–07. doi:10.1039/b306358e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.