494
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Collecting behaviors of high internal phase (HIP) emulsion in flotation of ultrafine high-ash content coal slime

, , , , , , & show all
Pages 2635-2655 | Received 25 Oct 2020, Accepted 27 Dec 2020, Published online: 06 Jan 2021

References

  • Ahmed, M., and H. A. Drzymala. Jan, 2012. Upgrading difficult-to-float coal using microemulsion. Mining, Metallurgy & Exploration 29(2):88–96. doi: 10.1007/BF03402399.
  • Arriagada, S., C. Acuña, and M. Vera. 2020. New technology to improve the recovery of fine particles in froth flotation based on using hydrophobized glass bubbles. Minerals Engineering 156:106364. doi:10.1016/j.mineng.2020.106364.
  • Bubakova, P., M. Pivokonsky, and P. Filip. 2013. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technology 235:540–49. doi:10.1016/j.powtec.2012.11.014.
  • Cao, L., X. Chen, and Y. Peng. 2020. The effect of aliphatic alcohol frothers on the dispersion of oily collector. Minerals Engineering . 157doi:10.1016/j.mineng.2020.106552.
  • Capes, C. E., and K. Darcovich. 1984. A survey of oil agglomeration in wet fine coal processing. Powder Technology 40 (1):43–52. doi:10.1016/0032-5910(84)85054-8.
  • Cebeci, Y. 2002. The investigation of the floatability improvement of Yozgat Ayrıdam lignite using various collectors. Fuel 81 (3):281–89. doi:10.1016/S0016-2361(01)00165-X.
  • Chang, Z., X. Chen, and Y. Peng. 2019. The interaction between diesel and surfactant triton X-100 and their adsorption on coal surfaces with different degrees of oxidation. Powder Technology 342:840–47. doi:10.1016/j.powtec.2018.10.047.
  • Chen, S., S. Wang, L. Li, J. Qu, X. Tao, H. He, et al. 2018. Exploration on the mechanism of enhancing low-rank coal flotation with cationic surfactant in the presence of oily collector. Fuel 227:190–98. doi:10.1016/j.fuel.2018.04.003.
  • Dai, Z. F., D. Fornasiero, and J. Ralston. 2000. Particle-bubble collision models - a review. Advances in Colloid and Interface Science 85 (2–3):231–56. doi:10.1016/s0001-8686(99)00030-5.
  • Dunstan, T. S., P. D. Fletcher, and S. Mashinchi. 2012. High internal phase emulsions: catastrophic phase inversion, stability, and triggered destabilization. Langmuir 28 (1):339–49. doi:10.1021/la204104m.
  • Grzybek, T., R. Pietrzak, and H. Wachowska. 2006. The influence of oxidation with air in comparison to oxygen in sodium carbonate solution on the surface composition of coals of different ranks. Fuel 85 (7):1016–23. doi:10.1016/j.fuel.2005.09.017.
  • Harimawan, A., S. Zhong, C. T. Lim, and Y. P. Ting. 2013. Adhesion of B. Subtilis spores and vegetative cells onto stainless Steel–Dlvo Theories and Afm spectroscopy. Journal of Colloid and Interface Science 405:233–41. doi:10.1016/j.jcis.2013.05.031.
  • Li, L., X. Lu, J. Qiu, and D. Liu. 2013. Effect of microemulsified collector on froth flotation of coal. Journal of the Southern African Institute of Mining and Metallurgy 113 (11):877–80.
  • Liu, C., W. Zhang, S. Song, and H. Li. 2019. Effects of lizardite on pentlandite flotation at different Ph: Implications for the role of particle-particle interaction. Minerals Engineering 132:8–13. doi:10.1016/j.mineng.2018.11.040.
  • Lu, Y., X. Wang, W. Liu, E. Li, F. Cheng, J. D. Miller, et al. 2019. Dispersion behavior and attachment of high internal phase water-in-oil emulsion droplets during fine coal flotation. Fuel 253:273–82. doi:10.1016/j.fuel.2019.05.012.
  • Mehrotra, V. P., K. V. S. Sastry, and B. W. Morey. 1983. Review of oil agglomeration techniques for processing of fine coals. International Journal of Mineral Processing 11 (3):175–201. doi:10.1016/0301-7516(83)90025-X.
  • Miettinen, T., J. Ralston, and D. Fornasiero. 2010. The limits of fine particle flotation. Minerals Engineering 23 (5):420–37. doi:10.1016/j.mineng.2009.12.006.
  • Ni, C., G. Xie, M. Jin, Y. Peng, and W. Xia. 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technology 292:210–16. doi:10.1016/j.powtec.2016.02.004.
  • Oats, W. J., O. Ozdemir, and A. V. Nguyen. 2010. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation. Minerals Engineering 23 (5):413–19. doi:10.1016/j.mineng.2009.12.002.
  • Özer, M., O. M. Basha, and B. Morsi. 2016. Coal-agglomeration processes: a review. International Journal of Coal Preparation and Utilization 37 (3):131–67. doi:10.1080/19392699.2016.1142443.
  • van Netten, K., D. J. Borrow, and K. P. Galvin. 2017. Fast agglomeration of ultrafine hydrophobic particles using a high-internal-phase emulsion binder comprising permeable hydrophobic films. Industrial & Engineering Chemistry Research 56 (38):10658–66. doi:10.1021/acs.iecr.7b02215.
  • van Netten, K., R. Moreno-Atanasio, and K. P. Galvin. 2014. Fine particle beneficiation through selective agglomeration with an emulsion binder. Industrial & Engineering Chemistry Research 53 (40):15747–54. doi:10.1021/ie5027502.
  • van Netten, K., R. Moreno-Atanasio, and K. P. Galvin. 2016. Selective agglomeration of fine coal using a water-in-oil emulsion. Chemical Engineering Research & Design 110:54–61. doi:10.1016/j.cherd.2016.02.029.
  • Wang, G., X. Bai, C. Wu, W. Li, K. Liu, A. Kiani, et al. 2018. Recent advances in the beneficiation of ultrafine coal particles. Fuel Processing Technology 178:104–25. doi:10.1016/j.fuproc.2018.04.035.
  • Wang, S., L. Tang, and X. Tao. 2018. Investigation of effect of surfactants on the hydrophobicity of low rank coal by sliding time measurements. Fuel 212:326–31. doi:10.1016/j.fuel.2017.10.063.
  • Wang, T., W. Xia, L. Liang, G. Xie, and Y. Peng. 2019. The coalescence of bubbles immersed in liquid and at the liquid–gas interface. Minerals Engineering 142:105924. doi:10.1016/j.mineng.2019.105924.
  • Wójcik, W., B. Jańczuk, and T. Białopiotrowicz. 1990. The influence of an apolar collector on the contact angle, detachment force and work of adhesion to the coal surface in agglomeration flotation of a low rank coal. Fuel 69 (2):207–10. doi:10.1016/0016-2361(90)90175-P.
  • Xia, W., and J. Yang. 2013. Enhancement in flotation of oxidized coal by oxidized diesel oil and grinding pretreatment. International Journal of Coal Preparation and Utilization 33 (6):257–65. doi:10.1080/19392699.2013.816300.
  • Xia, Y., G. Rong, Y. Xing, and X. Gui. 2019a. Synergistic adsorption of polar and nonpolar reagents on oxygen-containing graphite surfaces: implications for low-rank coal flotation. Journal of Colloid and Interface Science 557:276–81. doi:10.1016/j.jcis.2019.09.025.
  • Xia, Y., R. Zhang, Y. Xing, and X. Gui. 2019c. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: an experimental and molecular dynamics simulation study. Fuel 235:687–95. doi:10.1016/j.fuel.2018.07.059.
  • Xia, Y., Z. Yang, R. Zhang, Y. Xing, and X. Gui. 2019b. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing dtab: an experimental and molecular dynamics simulation study. Fuel 239:145–52. doi:10.1016/j.fuel.2018.10.156.
  • Xu, M., Y. Xing, M. Li, W. Jin, Y. Cao, X. Gui, et al. 2018. Oxidized coal flotation enhanced by adding N-octylamine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (20):2394–99. doi:10.1080/15567036.2018.1495787.
  • Zhao, J., X. Fu, G. Song, J. Liu, and L. Zhang. 2017. Effect of floccule morphological characteristics on the collision and attachment between floccule and bubble. Journal of China Coal Society 42 (3):738–44.
  • Zhao, X., S. Liu, and M. Fan. 2017. Preparation and application of microemulsion based on Kerosene and 2-Octanol. Coal Science and Technology 45 (4):205–10.
  • Zhu, Z., W. Yin, M. Duan, Y. Chen, R. Wang, M. Liu, Z. Liang, et al. 2019. Adsorption photocatalysts of carbon-entrained and roasted bentonite carrier for Ag3PO4 in efficient removal of antibiotics. Journal of Dispersion Science and Technology 1–7. doi:10.1080/01932691.2019.1659148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.