281
Views
14
CrossRef citations to date
0
Altmetric
Research Article

ANN modeling and residual analysis on screening efficiency of coal in vibrating screen

ORCID Icon, , , , &
Pages 2880-2894 | Received 08 Feb 2021, Accepted 26 Mar 2021, Published online: 06 Apr 2021

References

  • Aznarte, J. L., D. Molina, A. M. Sánchez, and J. M. Benítez. 2011. A test for the homoscedasticity of the residuals in fuzzy rule-based forecasters. Applied Intelligence 34 (3):386–93. doi:10.1007/s10489-011-0288-x.
  • Dey, S., and K. K. Bhattacharyya. 2007. Split and collector less flotation to medium coking coal fines for multi-product zero waste concept. Fuel Processing Technology 88 (6):585–90. doi:10.1016/j.fuproc.2007.01.011.
  • Hanumanthappa, H., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and B. K. Shanmugam. 2020a. A comparative study on a newly designed ball mill and the conventional ball mill performance with respect to the particle size distribution and recirculating load at the discharge end. Minerals Engineering 145:106091. doi:10.1016/j.mineng.2019.106091.
  • Hanumanthappa, H., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and B. K. Shanmugam. 2020b. Investigation on iron ore grinding based on particle size distribution and liberation. Transactions of the Indian Institute of Metals 73:1853–66. doi:10.1007/s12666-020-01999-5.
  • Hanumanthappa, H., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and B. K. Shanmugam. 2020c. Estimation of grinding time for desired particle size distribution and for hematite liberation based on ore retention time in the mill. Mining, Metallurgy & Exploration 37:481–92. doi:10.1007/s42461-019-00167-8.
  • Harish, H., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, A. Sinha, and S. B. Kumar. 2020. Investigation of iron ores based on the bond grindability test. AIP Conference Proceedings 2204, 040006. doi: 10.1063/1.5141579.
  • Jiang, H., Y. Zhao, C. Duan, C. Zhang, H. Diao, Z. Wang, and X. Fan. 2017a. Properties of technological factors on screening performance of coal in an equal-thickness screen with variable amplitude. Fuel 188:511–21. doi:10.1016/j.fuel.2016.10.071.
  • Jiang, H., Y. Zhao, C. Duan, X. Yang, C. Liu, J. Wu, J. Qiao, and H. Diao. 2017c. Kinematics of variable-amplitude screen and analysis of particle behavior during the process of coal screening. Powder Technology 306:88–95. doi:10.1016/j.powtec.2016.10.076.
  • Jiang, H., Y. Zhao, J. Qiao, C. Duan, Z. Chen, E. Zhou, H. Diao, and D. Zheng. 2017b. Process analysis and operational parameter optimization of a variable amplitude screen for coal classification. Fuel 194:329–38. doi:10.1016/j.fuel.2016.12.091.
  • Jorjani, E., H. Asadollahi Poorali, A. Sam, S. Chehreh Chelgani, S. Mesroghli, and M. R. Shayestehfar. 2009. Prediction of coal response to froth flotation based on coal analysis using regression and artificial neural network. Minerals Engineering 22 (11):970–76. doi:10.1016/j.mineng.2009.03.003.
  • Jorjani, E., S. Mesroghli, and S. Chehreh Chelgani. 2008. Prediction of operational parameters effect on coal flotation using artificial neural network. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 15 (5):528–33. doi:10.1016/S1005-8850(08)60099-7.
  • Kalyani, V. K., S. C. Pallavika, T. Gouri Charan, D. D. Haldar, K. P. Kamal, Y. P. Badhe, S. S. Tambe, and B. D. Kulkarni. 2007. Study of a laboratory-scale froth flotation process using artificial neural networks. Mineral Processing and Extractive Metallurgy Review 29 (2):130–42. doi:10.1080/08827500701421912.
  • Kalyani, V. K., T. Gouri Charan, D. D. Haldar, A. Sinha, and N. Suresh. 2008. Coal-fine beneficiation studies of a bench-scale water-only cyclone using artificial neural network. International Journal of Coal Preparation and Utilization 28:2:94–114. doi:10.1080/19392690802069918.
  • Khodakarami, M., O. Molatlhegi, and L. Alagha. 2019. Evaluation of ash and coal response to hybrid polymeric nanoparticles in flotation process: Data analysis using self-learning neural network. International Journal of Coal Preparation and Utilization 39 (4):199–218. doi:10.1080/19392699.2017.1308927.
  • Kumar, B. S., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2018. Shortcomings of vibrating screen and corrective measures: A review. International Conference on Emerging Trends in Engineering (ICETE) 2 (43):345–51. doi:10.1007/978-3-030-24314-2.
  • Kumar, B. S., M. Harsha Vardhan, G. Raj, M. Kaza, R. Sah, and H. Harish. 2020. The screening efficiency of linear vibrating screen - An experimental investigation. AIP Conference Proceedings 2204:040002. doi:10.1063/1.5141575.
  • Lopamudra, P., and S. K. Tripathy. 2014. Performance prediction of gravity concentrator by using artificial neural network-a case study. International Journal of Mining Science and Technology 24 (4):461–65. doi:10.1016/j.ijmst.2014.05.007.
  • Lopamudra Panda, A. K., S. A. Tripathy, S. K. Biswal, and A. K. Sahu. 2012. Application of artificial neural network to study the performance of jig for beneficiation of non-coking coal. Fuel 97:151–56. doi:10.1016/j.fuel.2012.02.018.
  • Mohanraj, G. T., M. R. Rahman, S. Joladarashi, H. Hanumanthappa, B. K. Shanmugam, H. Vardhan, and S. A. Rabbani. 2021. Design and fabrication of optimized magnetic roller for permanent roll magnetic separator (PRMS): Finite element method magnetics (FEMM) approach. Advanced Powder Technology 2021:0921–8831. doi:10.1016/j.apt.2021.01.003.
  • Osborne, D. G., and C. Hughes-Narborough. 1998. Economics of coal preparation of Indian coals for power generation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 20 (6):483–96. doi:10.1080/00908319808970073.
  • Özer, M., O. M. Basha, and B. Morsi. 2017. Coal-agglomeration processes: A review. International Journal of Coal Preparation and Utilization 37 (3):131–67. doi:10.1080/19392699.2016.1142443.
  • Sahu, A. K., S. K. Biswal, and A. Parida. 2009. Development of air dense medium fluidized bed technology for dry beneficiation of coal – A review. International Journal of Coal Preparation and Utilization 29 (4):216–41. doi:10.1080/19392690903113847.
  • Sahu, D., R. C. Chaurasia, and N. Suresh. 2019. Statistical studies on high ash Indian coal crushed to (−3 mm) using 76 mm dense medium cyclone. International Journal of Coal Preparation and Utilization 1–21. doi:10.1080/19392699.2019.1605987.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2019a. Evaluation of a new vibrating screen for dry screening fine coal with different moisture contents. International Journal of Coal Preparation and Utilization 1–10. doi:10.1080/19392699.2019.1652170.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah., and H. Harish. 2019b. Screening performance of coal of different size fractions with variation in design and operational flexibilities of the new vibrating screen. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–9. doi:10.1080/19392699.2019.1652170.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2020. Experimentation and statistical prediction of screening performance of coal with different moisture content in the vibrating screen. International Journal of Coal Preparation and Utilization 1–14. doi:10.1080/19392699.2020.1767606.
  • Shanmugam, B. K., H. Vardhan, M. G. Raj, M. Kaza, R. Sah, and H. Harish. 2021. Artificial neural network modelling for predicting the screening efficiency of coal with varying moisture content in the vibrating screen. International Journal of Coal Preparation and Utilization1–19. doi:10.1080/19392699.2021.1871610
  • Shanmugam, B. K., M. Kaza, H. Vardhan, M. G. Raj, R. Sah, A. R. Choudhary, N. Onkarappa, and N. Venkategouda, 2018. Material handling system for screening or feeding materials with high screening efficiency and energy efficiency. Temporary patent number TEMP/E-1/53448/2018-MUM, 2018.
  • Wang, Z., L. Peng, C. Zhang, L. Qi, C. Liu, and Y. Zhao. 2019. Research on impact characteristics of screening coals on vibrating screen based on discrete-finite element method. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–14. doi:10.1080/15567036.2019.1604905.
  • Wodzinski, P. 2003. Screening of fine granular material. Coal Preparation 23 (4):183–211. doi:10.1080/07349340302258.
  • Zhao, Y., L. Jiongtian, W. Xianyong, L. Zhenfu, C. Qingru, and S. Shulei. 2011. New progress in the processing and efficient utilization of coal. Mining Science and Technology (China) 21 (4):547–52. doi:10.1016/j.mstc.2011.06.015.
  • Zhou, J., Y. Liu, C. Du, and F. Wang. 2016. Experimental study on crushing characteristic of coal and gangue under impact load. International Journal of Coal Preparation and Utilization 36 (5):272–82. doi:10.1080/19392699.2015.1114478.
  • Zhovtiuk, G. V. 1988. Wet sizing of coals on stationary screens. Coal Preparation 5 (3–4):229–41. doi:10.1080/07349348808945567.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.