379
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of N2 and CO2 on shale oil from pyrolysis of Estonian oil shale

ORCID Icon, &
Pages 2908-2922 | Received 23 Feb 2021, Accepted 05 Apr 2021, Published online: 22 Apr 2021

References

  • Al-Ayed, O. S., and M. Matouq. 2009. Influence of Pyrolysis Environment on Liquid Product and Sulfur of Oil Shale. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 31 (8):679–86. doi:10.1080/15567030701752529.
  • Al-Ayed, S. 2006. Pyrolysis of Ellajjun Oil Shale Under the Influences of Nitrogen and Water Vapor. JES. Journal of Engineering Sciences 34(1):275–81. Omar. doi:10.21608/jesaun.2006.110277.
  • Asemani, M., and A. R. Rabbani. 2020. Detailed FTIR Spectroscopy Characterization of Crude Oil Extracted Asphaltenes: Curve Resolve of Overlapping Bands. Journal of Petroleum Science and Engineering 185 October 2019:106618. doi:10.1016/j.petrol.2019.106618
  • Avid, B., M. Born, B. Purevsuren, N. Undrakh, and A. Tuvshinjargal. 2003. Thermal Behavior of Khoot Oil Shale in Different Conditions. Oil Shale 20 (1):47–55.
  • Baird, Z. S., P. Uusi-Kyyny, O. Järvik, V. Oja, and V. Alopaeus. 2018. Temperature and Pressure Dependence of Density of a Shale Oil and Derived Thermodynamic Properties. Industrial & Engineering Chemistry Research 57 (14):5128–35. doi:10.1021/acs.iecr.7b05018.
  • Basu, P. 2010. Biomass Gasification and Pyrolysis. Biomass Gasification and Pyrolysis. Academic Press. https://doi.org/10.1016/C2009-0-20099-7.
  • Borrego, A. G., J. G. Prado, E. Fuente, M. D. Guillén, and C. G. Blanco. 2000. Pyrolytic Behaviour of Spanish Oil Shales and Their Kerogens. Journal of Analytical and Applied Pyrolysis 56 (1):1–21. doi:10.1016/S0165-2370(99)00092-3.
  • Burnham, A. K., R. H. Sanborn, R. W. Crawford, J. C. Newton, and J. A. Happe. 1980. Shale Oil Cracking. 2. Effect on Oil Composition. Lawrence Livermore National Laboratory Livermore, CA, UCID-18763 doi:10.1201/b16782-13.
  • Burnham, A. K., R. H. Sanborn, R. W. Crawford, J. C. Newton, and J. A. Happe. 1981. Chemistry of Shale Oil Cracking. In Oil Shale, Tar Sands, and Related Materials, American Chemical Society Symposium Series, ed. H. C. Stauffer, Vol. 163, 39–60. American Chemical Society. doi:10.1021/bk-1981-0163.ch004.
  • Burnham, A. K., and J. A. Happe. 1984. On the Mechanism of Kerogen Pyrolysis. Fuel 63 (10):1353–56. doi:10.1016/0016-2361(84)90336-3.
  • Carter, S. D., and D. N. Taulbee. 1985. FLUIDIZED BED STEAM RETORTING OF KENTUCKY OIL SHALE. Fuel Processing Technology 11 (3):251–72. doi:10.1016/0378-3820(85)90004-9.
  • Coates, J. 2006. Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry 1–23. doi:10.1002/9780470027318.a5606.
  • David, T. J., B. Masri, and S. Lee. 2000. Comparison of Retorting and Supercritical Extraction Techniques on El-Lajjun Oil Shale. Energy Sources 22 (5):453–63. doi:10.1080/00908310050013866.
  • Demirbas, A., H. Alidrisi, and M. A. Balubaid. 2015. API Gravity, Sulfur Content, and Desulfurization of Crude Oil. Petroleum Science and Technology 33 (1):93–101. doi:10.1080/10916466.2014.950383.
  • Dijkmans, T., M. R. Djokic, K. M. Van Geem, and G. B. Marin. 2015. Comprehensive Compositional Analysis of Sulfur and Nitrogen Containing Compounds in Shale Oil Using GC x GC - FID/SCD/NCD/TOF-MS. Fuel 140:398–406. doi:10.1016/j.fuel.2014.09.055.
  • Dung, N. V. 1990. Yields and Chemical Characteristics of Products from Fluidized Bed Steam Retorting of Condor and Stuart Oil Shales: Effect of Pyrolysis Temperature. Fuel 69 (3):368–76. doi:10.1016/0016-2361(90)90102-V.
  • Ekinci, E., A. E. Putun, M. Citiroglu, C. J. Lafferty, and C. E. Snape. 1991. “Effect of Steam and Hydrogen Pressure on Fixed-Bed Pyrolysis of Lignites and Oil Shales.” 1991 International Conference on Coal Science Proceedings,  University of Newcastle-Upon-Tyne, United Kingdom, 520–23. https://doi.org/10.1016/b978-0-7506-0387-4.50132-7.
  • El, H. K., A. Mokhlisse, and M. Ben Chanâa. 1999. Effect of Water Vapor on the Pyrolysis of the Moroccan (Tarfaya) Oil Shale. Journal of Analytical and Applied Pyrolysis 48 (2):65–76. doi:10.1016/S0165-2370(98)00108-9.
  • Fang-Fang, X., Z. Wang, L. Wei-Gang, and S. Wen-Li. 2010. Study on Thermal Conversion of Huadian Oil Shale under N2 and CO2 Atmospheres. Oil Shale 27 (4):309–20. doi:10.3176/oil.2010.4.04.
  • Gülamber, C., K. M. Ibrahim, S. Aljurf, and H. A. Rahman. 2019. “Introduction of Analytical Methods for Oil Shale Resource Evaluation.” IMCET 2019 - Proceedings of the 26th International Mining Congress and Exhibition of Turkey, Antalya, Turkey, no. February 2020: 1154–68.
  • Hershkowitz, F., W. N. Olmstead, R. P. Rhodes, and K. D. Rose. 1983. “Molecular Mechanism of Oil Shale Pyrolysis in Nitrogen and Hydrogen Atmospheres.” American Chemical Society Symposium Series, USA 230: 301–16. 10.1021/bk-1983-0230.ch015.
  • Jaber, J. O., and S. D. Probert. 1999. Pyrolysis and Gasification Kinetics of Jordanian Oil-Shales. Applied Energy 63 (4):269–86. doi:10.1016/s0306-2619(99)00033-1.
  • Jaber, J. O., and S. D. Probert. 2000. Non-Isothermal Thermogravimetry and Decomposition Kinetics of Two Jordanian Oil Shales under Different Processing Conditions. Fuel Processing Technology 63 (1):57–70. doi:10.1016/S0378-3820(99)00064-8.
  • Järvik, O., and V. Oja. 2017. Molecular Weight Distributions and Average Molecular Weights of Pyrolysis Oils from Oil Shales: Literature Data and Measurements by Size Exclusion Chromatography (SEC) and Atmospheric Solids Analysis Probe Mass Spectroscopy (ASAP MS) for Oils from Four Di. Energy and Fuels 31 (1):328–39. doi:10.1021/acs.energyfuels.6b02452.
  • Kann, J., A. Elenurm, I. Rohtla, N. Golubev, A. Kaidalov, and B. Kindorkin. 2004. About Thermal Low-Temperature Processing of Oil Shale by Solid Heat Carrier Method. Oil Shale 21 (3):195–203.
  • Lai, D., Y. Shi, S. Geng, Z. Chen, S. Gao, J. H. Zhan, and X. Guangwen. 2016. Secondary Reactions in Oil Shale Pyrolysis by Solid Heat Carrier in a Moving Bed with Internals. Fuel 173:138–45. doi:10.1016/j.fuel.2016.01.052.
  • Lai, D., J. H. Zhan, Y. Tian, S. Gao, and X. Guangwen. 2017. Mechanism of Kerogen Pyrolysis in Terms of Chemical Structure Transformation. Fuel 199:504–11. doi:10.1016/j.fuel.2017.03.013.
  • Lee, S., and R. Joshi. 1985. “Enhanced Oil Recovery from Western United States Type Oil Shale Using Carbon Dioxide Retorting Technique.” U.S. Patent No. 4,502,942.
  • Lee, S., M. E. Polasky, and K. L. Fullerton. 1991. Chemical Composition of Oil Shale II. Dependence on the Extraction Process. Fuel Science and Technology International 9 (9):1151–79. doi:10.1080/08843759108942316.
  • Luo, Y., H. Ben, W. Zhihong, K. Nie, G. Han, and W. Jiang. 2019. Impact of CO2 on Pyrolysis Products of Bituminous Coal and Platanus Sawdust. Polymers 11 (8):1–12. doi:10.3390/polym11081370.
  • Maaten, B., O. Järvik, O. Pihl, A. Konist, and A. Siirde. 2020. Oil Shale Pyrolysis Products and the Fate of Sulfur. Oil Shale 37 (1):51–69. doi:10.3176/oil.2020.1.03.
  • Minkova, V., M. Razvigorova, M. Goranova, L. Ljutzkanov, and G. Angelova. 1991. Effect of Water Vapour on the Pyrolysis of Solid Fuels. 1. Effect of Water Vapour during the Pyrolysis of Solid Fuels on the Yield and Composition of the Liquid Products. Fuel 70 (6):713–19. doi:10.1016/0016-2361(91)90067-K.
  • Moaffari, S., O. Järvik, and Z. S. Baird. 2021. “Composition of Gas from Pyrolysis of Estonian Oil Shale under N2 and CO2 Fischer Assay.” https://doi.org/10.31219/osf.io/2wv3h.
  • Mozaffari, P., Z. S. Baird, M. Listak, and V. Oja. 2020. Vapor Pressures of Narrow Gasoline Fractions of Oil from Industrial Retorting of Kukersite Oil Shale. Oil Shale 37 (4):288–303. doi:10.3176/oil.2020.4.03.
  • Mozaffari, P., O. Järvik, and Z. S. Baird. 2020. Vapor Pressures of Phenolic Compounds Found in Pyrolysis Oil. Journal of Chemical and Engineering Data 65 (11):5559–66. doi:10.1021/acs.jced.0c00675.
  • Nazzal, J. M. 2008. The Influence of Grain Size on the Products Yield and Shale Oil Composition from the Pyrolysis of Sultani Oil Shale. Energy Conversion and Management 49 (11):3278–86. doi:10.1016/j.enconman.2008.03.028.
  • Nazzal, J. M., and P. T. Williams. 2002. Influence of Temperature and Steam on the Products from the Flash Pyrolysis of Jordan Oil Shale. International Journal of Energy Research 26 (14):1207–19. doi:10.1002/er.845.
  • Oja, V., R. Rooleht, and Z. S. Baird. 2016. Physical and Thermodynamic Properties of Kukersite Pyrolysis Shale Oil: Literature Review. Oil Shale 33 (2):184–97. doi:10.3176/oil.2016.2.06.
  • Olukcu, N., J. Yanik, M. Saglam, and M. Yuksel. 2002. Liquefaction of Beypazari Oil Shale by Pyrolysis. Journal of Analytical and Applied Pyrolysis 64 (1):29–41. doi:10.1016/S0165-2370(01)00168-1.
  • Polasky, M. E., and S. Lee. 1988. Boiling Range Distributions of Various Shale Oils and Influence of Carbon Dioxide Retorting. Fuel Science and Technology International 6 (1):83–94. doi:10.1080/08843758808915875.
  • Pomerantz, A. E., K. D. Bake, P. R. Craddock, K. W. Kurzenhauser, B. G. Kodalen, S. Mitra-Kirtley, and T. B. Bolin. 2014. Sulfur Speciation in Kerogen and Bitumen from Gas and Oil Shales. Organic Geochemistry 68:5–12. doi:10.1016/j.orggeochem.2013.12.011.
  • Qing, W., S. U. N. Baizhong, H. U. Aijuan, B. A. I. Jingru, and L. I. Shaohua. 2007. Pyrolysis Charactersitics of Huadian Oil Shales. Oil Shale 24 (2):147–57.
  • Shadle, L. J., K. S. Seshadri, and D. L. Webb. 1994. Characterization of Shale Oils. 1. Analysis of Fischer Assay Oils and Their Aromatic Fractions Using Advanced Analytical Techniques. Fuel Processing Technology 37 (2):101–20. doi:10.1016/0378-3820(94)90010-8.
  • Shi, J., M. Yue, L. Shuyuan, W. Jianxun, Y. Zhu, and J. Teng. 2017. Characteristics of Estonian Oil Shale Kerogen and Its Pyrolysates with Thermal Bitumen as a Pyrolytic Intermediate. Energy and Fuels 31 (5):4808–16. doi:10.1021/acs.energyfuels.7b00054.
  • Strizhakova, Y. A., and T. V. Usova. 2008. Current Trends in the Pyrolysis of Oil Shale: A Review. Solid Fuel Chemistry 42 (4):197–201. doi:10.3103/S0361521908040022.
  • Tang, L., Y. Yan, Y. Meng, J. Wang, P. Jiang, C. H. Pang, and W. Tao. 2019. CO2 Gasification and Pyrolysis Reactivity Evaluation of Oil Shale. Energy Procedia 158:1694–99. doi:10.1016/j.egypro.2019.01.394.
  • Vandenbroucke, M., and C. Largeau. 2007. Kerogen Origin, Evolution and Structure. Organic Geochemistry 38 (5):719–833. doi:10.1016/j.orggeochem.2007.01.001.
  • Wang, S., X. Jiang, X. Han, and J. Tong. 2013. Effect of Residence Time on Products Yield and Characteristics of Shale Oil and Gases Produced by Low-Temperature Retorting of Dachengzi Oil Shale. Oil Shale 30 (4):501–16. doi:10.3176/oil.2013.4.04.
  • Wang, W., L.-Y. Li, Y. M. A. C-t Yue, and J.-L. He. 2014. Pyrolysis Kinetics of North-Korean Oil Shale. Oil Shale 31 (3):250. doi:10.3176/oil.2014.3.05.
  • Williams, P. T., and J. M. Nazzal. 1995. Polycyclic Aromatic Compounds in Oils Derived from the Fluidised Bed Pyrolysis of Oil Shale. Journal of Analytical and Applied Pyrolysis 35 (2):181–97. doi:10.1016/0165-2370(95)00908-9.
  • Williams, P. T., and J. M. Nazzal. 1998. Polycyclic Aromatic Compounds in Shale Oils: Influence of Process Conditions. Environmental Technology (United Kingdom) 19 (8):775–87. doi:10.1080/09593331908616734.
  • Zhao, S., Y. Sun, X. Lü, and L. Qiang. 2021. Kinetics and Thermodynamics Evaluation of Carbon Dioxide Enhanced Oil Shale Pyrolysis. Scientific Reports 11 (1):1–14. doi:10.1038/s41598-020-80205-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.