231
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimization of composite binder for Lignite powder briquetting

, , , , &
Pages 2990-3003 | Received 31 Dec 2020, Accepted 04 May 2021, Published online: 16 May 2021

References

  • Chu, M., S. Zhu, Y. Yi, and Y. Deng. 2012. Characteristics of pyrolysis products of bori lignite briquette. Energy Procedia 16:307–13. doi:10.1016/j.egypro.2012.01.051.
  • De Girolamo, A., V. Tan, Z. Liu, and L. Zhang. 2018. Pyrolysis of a lignite briquette–Experimental investigation and 1-dimensional modelling approach. Fuel 212:533–45. doi:10.1016/j.fuel.2017.10.021.
  • Deniz, V. 2013. Production of water-resistant briquettes from a mixture of an imported bituminous coal and a Turkish lignite with copolymer binder. International Journal of Coal Preparation and Utilization 33 (1):26–35. doi:10.1080/19392699.2012.732134.
  • Gui, X., L. Lian, Y. Xing, B. Wang, Q. He, and Y. Cao. 2020. Enhancing lignite flotation performance by mechanical thermal expression treatment. International Journal of Coal Preparation and Utilization 40 (1):51–58. doi:10.1080/19392699.2017.1363737.
  • Gülcan, E., Ö. Y. Gülsoy, and I. B. Can. 2020. Ash content estimation of lignite with visible light and near-infrared sensors. International Journal of Coal Preparation and Utilization 40 (7):438–58. doi:10.1080/19392699.2019.1696781.
  • Guo, Z., J. Wu, Y. Zhang, K. Cao, Y. Feng, J. Liu, and J. Li. 2020a. Briquetting optimization method for the lignite powder using response surface analysis. Fuel 267:117260. doi:10.1016/j.fuel.2020.117260.
  • Guo, Z., J. Wu, Y. Zhang, F. Guo, Z. Miao, X. Zhao, and Y. Guo. 2020b. Analysis of enhancing moisture-proof and waterproof performance for lignite powder briquette. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2020.1861604.
  • Guo, Z., J. Wu, Y. Zhang, F. Wang, Y. Guo, K. Chen, and H. Liu. 2020c. Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel 272:117632. doi:10.1016/j.fuel.2020.117632.
  • Habib, U., A. U. Khan, and M. Habib. 2013. Compressive strength and heating values evaluation of the indigeneous coal briquettes of Pakistan (KPK Province). International Journal of Current Research and Review 5:126.
  • Muazu, R. I., and J. A. Stegemann. 2017. Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel 194:339–47. doi:10.1016/j.fuel.2017.01.019.
  • Ngusale, G. K., Y. Luo, and J. K. Kiplagat. 2014. Briquette making in Kenya: Nairobi and peri-urban areas. Renewable and Sustainable Energy Reviews 40:749–59. doi:10.1016/j.rser.2014.07.206.
  • Nikolopoulos, N., I. Violidakis, E. Karampinis, M. Agraniotis, C. Bergins, P. Grammelis, and E. Kakaras. 2015. Report on comparison among current industrial scale lignite drying technologies (A critical review of current technologies). Fuel 155:86–114.
  • Onchieku, J., B. Chikamai, and M. Rao. 2012. Optimum parameters for the formulation of charcoal briquettes using bagasse and clay as binder. European Journal of Sustainable Development 1 (3):477–477. doi:10.14207/ejsd.2012.v1n3p477.
  • Pekel, E., M. C. Akkoyunlu, M. T. Akkoyunlu, and S. Pusat. 2020. Decision tree regression model to predict low-rank coal moisture content during convective drying process. International Journal of Coal Preparation and Utilization, 1–8.
  • Qiu, G., T. Jiang, K. Fa, D. Zhu, and D. Wang. 2004. Interfacial characterizations of iron ore concentrates affected by binders. Powder Technology 139:1–6.
  • Riva, L., H. K. Nielsen, Ø. Skreiberg, L. Wang, P. Bartocci, M. Barbanera, G. Bidini, and F. Fantozzi. 2019. Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke. Applied Energy 256:113933. doi:10.1016/j.apenergy.2019.113933.
  • Salleh, K. M., R. Hashim, O. Sulaiman, S. Hiziroglu, N. A. W. N. Wan, N. A. Karim, N. Jumhuri, and L. Z. P. Ang. 2015. Evaluation of properties of starch-based adhesives and particleboard manufactured from them. Journal of Adhesion Science and Technology 29 (4):319–36. doi:10.1080/01694243.2014.987362.
  • Seyed, M., Z. Makhloufi, and M. Bederina. 2016. Effect of ternary binder on the mechanical and microstructural properties of sand concrete. Journal of Adhesion Science and Technology: The International Journal of Theoretical and Basic Aspects of Adhesion Science and Its Applications in All Areas of Technology 30 (4):339–61. doi:10.1080/01694243.2015.1099867.
  • Shang, X., K. Hou, J. Wu, Y. Zhang, J. Liu, and J. Qi. 2016. The influence of mineral matter on moisture adsorption property of Shengli lignite. Fuel 182:749–53.
  • Si, C., J. Wu, Y. Zhang, G. Liu, and Q. Guo. 2019. Experimental and numerical simulation of drying of lignite in a microwave-assisted fluidized bed. Fuel 242:149–59.
  • Sun, B., J. Yu, A. Tahmasebi, and Y. Han. 2014. An experimental study on binderless briquetting of Chinese lignite: Effects of briquetting conditions. Fuel Processing Technology 124:243–48. doi:10.1016/j.fuproc.2014.03.013.
  • Tahmasebi, A., J. Yu, Y. Han, F. Yin, S. Bhattacharya, and D. Stokie. 2012. Study of chemical structure changes of Chinese lignite upon drying in superheated steam, microwave, and hot air. Energy & Fuels 26 (6):3651–60. doi:10.1021/ef300559b.
  • Taulbee, T. D., D. Patil, R. Q. Honaker, and B. Parekh. 2009. Briquetting of coal fines and sawdust Part I: Binder and briquetting-parameters evaluations. International Journal of Coal Preparation and Utilization 29 (1):1–22. doi:10.1080/19392690802628705.
  • Tosun, Y. I. 2007. Clean fuel-magnesia bonded coal briquetting. Fuel Processing Technology 88 (10):977–81. doi:10.1016/j.fuproc.2007.05.008.
  • Wang, Y., K. Wu, and Y. Sun. 2018. Effects of raw material particle size on the briquetting process of rice straw. Journal of the Energy Institute 91 (1):153–62. doi:10.1016/j.joei.2016.09.002.
  • Wang, Y., H. Zuo, K. Bai, J. Zhao, and J. Chen. 2020. Characterization of the hot-pressed coal briquettes prepared with the hypercoal, energy technology 2020: Recycling, carbon dioxide management, and other technologies, 57–67. Springer.
  • Yang, Y., J. Liao, Q. Mo, L. Chang, and W. Bao. 2019. Evolution of physical and chemical structures in lignite during dewatering process and their effects on combustion reactivity. Energy & Fuels 33 (5):3891–98. doi:10.1021/acs.energyfuels.8b04239.
  • Zhang, G., Y. Sun, and Y. Xu. 2018. Review of briquette binders and briquetting mechanism. Renewable and Sustainable Energy Reviews 82:477–87. doi:10.1016/j.rser.2017.09.072.
  • Zhang, X., D. Xu, Z. Xu, and Q. Cheng. 2001. The effect of different treatment conditions on biomass binder preparation for lignite briquette. Fuel Processing Technology 73 (3):185–96. doi:10.1016/S0378-3820(01)00179-5.
  • Zhao, Y., Z. Wang, G. Zhao, and R. Sun. 2019. Effects of upgrading treatment on the physicochemical structure, moisture re-adsorption ability, and NOx emission characteristic of lignite particles. Energy & Fuels 33 (5):4070–78. doi:10.1021/acs.energyfuels.9b00306.
  • Zhuo, Y., T. Wang, C. Li, and Y. Shen. 2018. Numerical study of the pyrolysis of ellipsoidal low-rank coal briquettes. Energy & Fuels 32 (4):4189–201. doi:10.1021/acs.energyfuels.7b03224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.