159
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Investigating Compatible Drying Technique for Safe Utilization of Thar Coal, Pakistan

, , &
Pages 3303-3324 | Received 13 Mar 2021, Accepted 19 Jul 2021, Published online: 11 Aug 2021

References

  • Artanto, Y., and A. L. Chaffee. 2005. Dewatering low rank coals by Mechanical Thermal Expression (MTE) and its influence on organic carbon and inorganic removal. Coal Preparation 25 (4):251–67. doi:10.1080/07349340500444497.
  • Avagianos, I., I. Violidakis, E. Karampinis, D. Rakopoulos, E. Nanos, N. Polonidis, C. Papapavlou, P. Grammelis, and E. Kakaras. 2019. Thermal simulation and economic study of predried lignite production retrofit of a Greek power plant for enhanced flexibility. Journal of Energy Engineering 145(2): 04019001. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EY.1943–7897.0000591
  • Aziz, M., Y. Kansha, A. Kishimoto, Y. Kotani, Y. Liu, and A. Tsutsumi. 2012. Advanced energy saving in low rank coal drying based on self-heat recuperation technology. Fuel Processing Technology 104:16–22. doi:10.1016/j.fuproc.2012.06.020.
  • Bratek, K., W. Bratek, I. Gerus-Piasecka, S. Jasieńko, and P. Wilk. 2002. Properties and structure of different rank anthracites. Fuel 81(1): 97–108. doi:10.1016/S0016-2361(01)00120-X
  • Chou, V., A. K. S. Iyengar, V. Shah, M. Woods. 2015. Cost and Performance Baseline for Fossil Energy Plants Supplement: Sensitivity to CO2 Capture Rate in Coal Fired Power Plants. DOE/NETL–2015/1720.
  • Evans, D. G. 1973. The brown-coal/water system: Part 4. Shrinkage on drying. Fuel52(3): 186–190. doi:10.1016/0016-2361(73)90077-X
  • Fu, B. A., and M. Q. Chen. 2015. Thin-layer drying kinetics of lignite during hot air forced convection. Chemical Engineering Research & Design 102:416–28. doi:10.1016/j.cherd.2015.07.019.
  • Fu, B. A., M. Q. Chen, and J. J. Song. 2017. Investigation on the microwave drying kinetics and pumping phenomenon of lignite spheres. Applied Thermal Engineering 124:371–80. doi:10.1016/j.applthermaleng.2017.06.034.
  • Hu, S., and X. Liu. 2019. A general EMMS drag model applicable for gas-solid turbulent beds and cocurrent downers. Chemical Engineering Science 205: 14–24. doi:10.1016/j.ces.2019.04.033
  • Jayarathna, C. K., M. Balfe, B. M. E. Moldestad, and L. A. Tokheim. 2019. Improved multistage cross-flow fluidized bed classifier. Powder Technology 342: 621–629. doi:10.1016/j.powtec.2018.10.026
  • Jayarathna, C. K., J. Chladek, M. Balfe, B. M. E. Moldestad, and L. A. Tokheim. 2018. Impact of solids loading and mixture composition on the classification efficiency of a novel cross-flow fluidized bed classifier. Powder Technology 336:30–44. doi:10.1016/j.powtec.2018.05.026.
  • Karthikeyan, M., W. Zhonghua, and A. S. Mujumdar. 2009. Low-Rank coal drying technologies—Current status and new developments. Drying Technology 27 (3):403–15. doi:10.1080/07373930802683005.
  • Lester, E., and S. Kingman. 2004. The effect of microwave preheating on five different coals. Fuel 83: 1941–1947. doi:10.1016/j.fuel.2004.05.006
  • Levendis, Y. A., K. Joshi, R. Khatami, and A. F. Sarofim. 2011. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse. Combustion and Flame 158 (3):452–65. doi:10.1016/J.COMBUSTFLAME.2010.09.007.
  • Li, C. Z. 2004. Advances in the science of Victorian brown coal. Elsevier Science. https://www.elsevier.com/books/advances-in-the-science-of-victorian-brown-coal/li/978-0-08-044269–3
  • Liu, M., S. Wang, R. Liu, and J. Yan. 2019. Energy, exergy and economic analyses on heat pump drying of lignite. Drying Technology37(13):1688–1703. doi:10.1080/07373937.2018.1531883
  • Liu, M., Y. Qin, H. Yan, X. Han, and D. Chong. 2015. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies. Energy Conversion and Management 105:118–26. doi:10.1016/j.enconman.2015.07.069.
  • Liu, Y., and H. Ohara. 2017. Energy-efficient fluidized bed drying of low-rank coal. Fuel Processing Technology 155:200–08. doi:10.1016/j.fuproc.2016.06.008.
  • Liu, Z., Y. Xie, Y. Wang, J. Yu, S. Gao, and G. Xu. 2012. Tandem fluidized bed elutriator - Pneumatic classification of coal particles in a fluidized conveyer. Particuology 10 (5):600–06. doi:10.1016/j.partic.2012.03.005.
  • Mujumdar, A. S. 2006. Drying of coal. In Handbook of Industrial Drying, 3rd Ed. CRC Press. doi:10.1201/9781420017618
  • Mujumdar, A. S. 1990. Superheated steam drying: principles, practice and potential for use of electricity., https://www.osti.gov/etdeweb/biblio/6153532
  • Nikolopoulos, N., I. Violidakis, E. Karampinis, M. Agraniotis, C. Bergins, P. Grammelis, and E. Kakaras. 2015. Report on comparison among current industrial scale lignite drying technologies (A critical review of current technologies). Fuel 155: 86–114. doi:10.1016/j.fuel.2015.03.065
  • Osman, H., S. V. Jangam, J. D. Lease, and A. S. Mujumdar. 2011. Drying of Low-Rank coal (LRC)—A review of recent patents and innovations. Drying Technology 29 (15):1763–83. doi:10.1080/07373937.2011.616443.
  • Park, J. H., C.-H. Lee, Y. C. Park, D. Shun, D.-H. Bae, and J. Park. 2014. Drying efficiency of Indonesian lignite in a batch-circulating fluidized bed dryer. Drying Technology 32 (3):268–78. doi:10.1080/07373937.2013.822385.
  • Perera, M. S. A., P. G. Ranjith, S. K. Choi, A. Bouazza, J. Kodikara, and D. Airey. 2011. A review of coal properties pertinent to carbon dioxide sequestration in coal seams: with special reference to Victorian brown coals. Environmental earth sciences 64(1): 223–235. doi:10.1007/s12665-010-0841-7
  • Potter, O. E., and A. J. Keogh. 1979. Cheaper power from high moisture brown coals—Part I and II. Journal of the of Energy Institute 143–149. https://research.monash.edu/en/publications/cheaper-power-from-high-moisture-brown-coals-2-feasibility-and-de
  • Potter, O. E., L. X. Guang, S. Georgakopoulos, and M.Q. Ming.1990. Some design aspects of steam-fluidized steam heated dryers. Drying Technology 8(1): 25–39. doi:10.1080/07373939008959862
  • Pusat, S., M. T. Akkoyunlu, and H. H. Erdem. 2016. Evaporative drying of low-rank coal. In hand book of Sustainable Drying Technologies. IntechOpen. doi:10.5772/63744
  • Rao, Z., Y. Zhao, C. Huang, C. Duan, and J. He. 2015. Recent developments in drying and dewatering for low rank coals. In Progress in energy and combustion science, Vol. 46., 1–11. Elsevier Ltd. doi:10.1016/j.pecs.2014.09.001.
  • Rattanadecho, P., N. Suwannapum, A. Watanasungsuit, and A. Duanduen. 2007. Drying of dielectric materials using a continuous microwave belt drier (Case study: Ceramics and natural rubber). Journal of Manufacturing Science and Engineering, Transactions of the ASME 129 (1):157–63. doi:10.1115/1.2386166.
  • Rong, R. X. 1993. Advances in coal preparation technology, vol. 2: Literature review on fine coal and tailings dewatering. JKMRC report on AMIRA Project P239C, University of Queensland, p. 30.
  • Sakaguchi, M., K. Laursen, H. Nakagawa, and K. Miura. 2008. Hydrothermal upgrading of Loy Yang Brown coal - Effect of upgrading conditions on the characteristics of the products. Fuel Processing Technology 89 (4):391–96. doi:10.1016/j.fuproc.2007.11.008.
  • Santhosh Raaj, S., S. Arumugam, M. Muthukrishnan, S. Krishnamoorthy, and N. Anantharaman. 2016. Characterization of coal blends for effective utilization in thermal power plants. Applied Thermal Engineering 102:9–16. doi:10.1016/J.APPLTHERMALENG.2016.03.035.
  • Sarunac, N., E. K. Levy, M. Ness, C. W. Bullinger, J. P. Mathews, and P. M. Halleck. 2009. A novel fluidized bed drying and density segregation process for upgrading low-rank coals. International Journal of Coal Preparation and Utilization 29 (6):317–32. doi:10.1080/19392691003666387.
  • Sarwar, A., M. Nasiruddin Khan, and K. F. Azhar. 2012. Kinetic studies of pyrolysis and combustion of Thar coal by thermogravimetry and chemometric data analysis. Journal of Thermal Analysis and Calorimetry 109:97–103. doi:10.1007/s10973-011-1725-0.
  • Si, C., J. Wu, Y. Wang, Y. Zhang, and X. Shang. 2015. Drying of low-rank coals: A review of fluidized bed technologies. Drying Technology 33 (3):277–87. doi:10.1080/07373937.2014.952382.
  • Stokie, D., M. W. Woo, and S. Bhattacharya. 2013. Comparison of superheated steam and air fluidized-bed drying characteristics of Victorian brown coals. Energy and Fuels 27 (11):6598–606. doi:10.1021/ef401649j.
  • Tahmasebi, A., J. Yu, X. Li, and C. Meesri. 2011. Experimental study on microwave drying of Chinese and Indonesian low-rank coals. Fuel Processing Technology 92 (10):1821–29. doi:10.1016/j.fuproc.2011.04.004.
  • Verma, A. K. and A. Sirvaiya. 2016. Comparative analysis of intelligent models for prediction of Langmuir constants for CO2 adsorption of Gondwana coals in India. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 2(2): 97–109. doi:10.1007/s40948-016-0025-3
  • Wang, S., W. J. Yin, Z. J. Li, X. S. Yang, and K. Zhang. 2018. Numerical investigation of chemical looping gasification process using solid fuels for syngas production. Energy Conversion and Management 173: 296–302. doi:10.1016/j.enconman.2018.07.043
  • Willson, W. G., S. A. Farnum, G. G. Baker, and G. H. Quentin. 1987. Low-rank coal slurries for gasification. Fuel Processing Technology 15 (C):157–72. doi:10.1016/0378-3820(87)90042-7.
  • Willson, W.G., D. A. N. Walsh, and W. Irwinc. 1997. Overview of low-rank coal (LRC) drying. Coal Preparation 18(1–2): 1–15. doi:10.1080/07349349708905135
  • Woo, M. W., D. Stokie, W. L. Choo, and S. Bhattacharya. 2013. Master curve behaviour in superheated steam drying of small porous particles. Applied Thermal Engineering 52 (2):460–67. doi:10.1016/j.applthermaleng.2012.11.038.
  • Xu, C., G. Xu, Y. Yang, S. Zhao, K. Zhang, and D. Zhang. 2015. An improved configuration of low-temperature pre-drying using waste heat integrated in an air-cooled lignite fired power plant. Applied Thermal Engineering 90:312–21. doi:10.1016/j.applthermaleng.2015.06.101.
  • Xu, C., X. Li, G. Xu, T. Xin, Y. Yang, and W. L.-E. C. 2018. Energy, exergy and economic analyses of a novel solar-lignite hybrid power generation process using lignite pre-drying. Elsevier. Retrieved January 15, 2021, from, https://www.sciencedirect.com/science/article/pii/S0196890418305569?casa_token=jBcPoMEpoowAAAAA:pOlQq8y8hOQ-uiEZ4PTtlxpY9_s-6XvsL4o7G-xkNzM-Ahy05e1uk3eSsilBYl2-Vz1JjqnczxHp
  • Xu, G., W. Dong, C. Xu, Q. Liu, and Y. Yang. 2016. An integrated lignite pre-drying system using steam bleeds and exhaust flue gas in a 600 MW power plant. Applied Thermal Engineering 107:1145–57. doi:10.1016/j.applthermaleng.2016.07.078.
  • Zeneli, M., A. Nikolopoulos, N. Nikolopoulos, P. Grammelis, S. Karellas, and E. Kakaras. 2017. Simulation of the reacting flow within a pilot scale calciner by means of a three phase TFM model. Fuel Processing Technology162:105–125. doi:10.1016/j.fuproc.2017.03.032
  • Zhang, H., J. Liu, Y. Cao, and Y. Wang. 2013. Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride. Powder technology 246: 658–663. doi:10.1016/J.POWTEC.2013.06.033
  • Zhang, N., C. Zhou, W. Xia, and A. V. Nguyen. 2018. Volatilization of mercury in coal during conventional and microwave drying and its potential guidance for environmental protection. Journal of Cleaner Production 176:1–6. doi:10.1016/j.jclepro.2017.12.131.
  • Zhao, P., L. Zhong, R. Zhu, Y. Zhao, Z. Luo, and X. Yang. 2016. Drying characteristics and kinetics of Shengli lignite using different drying methods. Energy Conversion and Management 120:330–37. doi:10.1016/j.enconman.2016.04.105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.