189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic behaviors of coal spontaneous combustion under different CO2 concentration

, , & ORCID Icon
Pages 1583-1596 | Received 27 Jul 2022, Accepted 28 Aug 2022, Published online: 02 Sep 2022

References

  • Arisoy, A., and B. Beamish. 2015. Reaction kinetics of coal oxidation at low temperatures. Fuel 159:412–17. doi:http://doi.org/10.1016/j.fuel.2015.06.054.
  • Battistutta, E., P. Van Hemert, M. Lutynski, H. Bruining, and K. H. Wolf. 2010. Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal. International Journal of Coal Geology 84 (1):39–48. doi:10.1016/j.coal.2010.08.002.
  • Bayer, P., and M. Aklin. 2020. The European Union emissions trading system reduced CO 2 emissions despite low prices. Proceedings of the National Academy of Sciences 117 (16):8804–12. doi:https://doi.org/10.1073/pnas.1918128117.
  • Chen, X., T. Ma, X. Zhai, and C. Lei. 2019. Thermogravimetric and infrared spectroscopic study of bituminous coal spontaneous combustion to analyze combustion reaction kinetics. Thermochimica Acta 676:84–93. doi:https://doi.org/10.1016/j.tca.2019.04.002.
  • Deng, J., B. Li, Y. Xiao, L. Ma, C. P. Wang, B. Lai-Wang, and C. M. Shu. 2017. Combustion properties of coal gangue using thermogravimetry–Fourier transform infrared spectroscopy. Applied Thermal Engineering 116:244–52. doi:10.1016/j.applthermaleng.2017.01.083.
  • Deng, J., L. F. Ren, L. Ma, X. Y. Qin, W. F. Wang, and C. C. Liu. 2019. Low-Temperature oxidation and reactivity of coal in O2/N2 and O2/CO2 atmospheres, a case of carboniferous–Permian coal in Shaanxi, China. Environmental Earth Sciences 78 (6):1–12. doi:10.1007/s12665-019-8244-x.
  • Deng, J., Y. Xiao, J. Lu, H. Wen, and Y. Jin. 2015. Application of composite fly ash gel to extinguish outcrop coal fires in China. Natural Hazards 79 (2):881–98. doi:https://doi.org/10.1007/s11069-015-1881-9.
  • Deng, J., J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, and C. Wang. 2016. Thermal analysis of spontaneous combustion behavior of partially oxidized coal. Process Safety and Environmental Protection 104:218–24. doi:https://doi.org/10.1016/j.psep.2016.09.007.
  • Dong, K., H. Jiang, R. Sun, and X. Dong. 2019. Driving forces and mitigation potential of global CO2 emissions from 1980 through 2030: Evidence from countries with different income levels. The Science of the Total Environment 649:335–43. doi:10.1016/j.scitotenv.2018.08.326.
  • Fan, H. H., K. Wang, X. W. Zhai, and L. Hu. 2021. Combustion kinetics and mechanism of pre-oxidized coal with different oxygen concentrations. ACS Omega 6 (29):19170–82. doi:http://doi.org/10.1021/acsomega.1c02520.
  • Feng, G., Y. Wu, C. Zhang, S. Hu, H. Shao, and G. Xu. 2017. Changes on the low-temperature oxidation characteristics of coal after CO2 adsorption: A case study. Journal of Loss Prevention in the Process Industries 49:536–44. doi:10.1016/j.jlp.2017.05.018.
  • Jayaraman, K., I. Gokalp, and S. Bostyn. 2015. High ash coal pyrolysis at different heating rates to analyze its char structure, kinetics and evolved species. Journal of Analytical and Applied Pyrolysis 113:426–33. doi:10.1016/j.jaap.2015.03.007.
  • Jia, X., J. Wu, C. Lian, and J. Rao. 2022. Assessment of coal spontaneous combustion index gas under different oxygen concentration environment: An experimental study. Environmental Science and Pollution Research 1–11. doi:10.1007/s11356-022-21920-5.
  • Koga, N. 2013. Ozawa’s kinetic method for analyzing thermoanalytical curves. Journal of Thermal Analysis and Calorimetry 113 (3):1527–41. doi:https://doi.org/10.1007/s10973-012-2882-5.
  • Lei, C., J. Deng, K. Cao, L. Ma, Y. Xiao, and L. Ren. 2018. A random forest approach for predicting coal spontaneous combustion. Fuel 223:63–73. doi:10.1016/j.fuel.2018.03.005.
  • Lei, C., J. Deng, K. Cao, Y. Xiao, L. Ma, W. Wang, and C. M. Shu. 2019. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob. Fuel 239:297–311. doi:10.1016/j.fuel.2018.11.006.
  • Lei, B., B. He, B. Xiao, P. Du, and B. Wu. 2020. Comparative study of single inert gas in confined space inhibiting open flame coal combustion. Fuel 265:116976. doi:10.1016/j.fuel.2019.116976.
  • Li, H., M. Wu, Z. Liu, F. Wang, N. Yang, R. Lou, C. Qin, M. Yu, and Y. Yu. 2022. Permeation-Diffusion characteristics and air-leakage blocking mechanism for the fire extinguishing inorganic gel flows in loose broken coal particles. Fuel 328:125245. doi: 10.1016/j.fuel.2022.125245.
  • Li, P., Y. Yang, J. Li, G. Miao, K. Zheng, and Y. Wang. 2021. Study on the oxidation thermal kinetics of the spontaneous combustion characteristics of water-immersed coal. Thermochimica Acta 699:178914. doi:https://doi.org/10.1016/j.tca.2021.178914.
  • Lin, B., and M. Y. Raza. 2019. Analysis of energy related CO2 emissions in Pakistan. Journal of Cleaner Production 219:981–93. doi:https://doi.org/10.1016/j.jclepro.2019.02.112.
  • Ma, L., W. Yu, L. Ren, X. Qin, and Q. Wang. 2019. Micro-Characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres. Fuel 246:259–67. doi:10.1016/j.fuel.2019.02.073.
  • Nair, M., M. B. Arvin, R. P. Pradhan, and S. Bahmani. 2021. Is higher economic growth possible through better institutional quality and a lower carbon footprint? Evidence from developing countries. Renewable Energy 167:132–45. doi:https://doi.org/10.1016/j.renene.2020.11.056.
  • Niu, Y., S. Liu, B. Yan, S. Wang, and X. Zhang. 2018. Effects of CO2 gasification reaction on the combustion of pulverized coal char. Fuel 233:77–83. doi:10.1016/j.fuel.2018.06.053.
  • Pan, R., J. Ma, L. Zheng, and J. Wang. 2020. Experimental study on the effects of chemical composite additive on the microscopic characteristics of spontaneous combustion coal. Environmental Science and Pollution Research 27 (5):5606–19. doi:https://doi.org/10.1007/s11356-019-07340-y.
  • Pone, J. D. N., K. A. Hein, G. B. Stracher, H. J. Annegarn, R. B. Finkleman, and D. R. Blake. 2007. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. International Journal of Coal Geology 72 (2):124–40. doi:10.1016/j.coat.2007.01.001.
  • Ren, L. F., Q. W. Li, J. Deng, X. Yang, L. Ma, and W. F. Wang. 2019. Inhibiting effect of CO 2 on the oxidative combustion thermodynamics of coal. RSC Advances 9 (70):41126–34. doi:10.1039/C9RA08875J.
  • Shao, Z., D. Wang, Y. Wang, X. Zhong, X. Tang, and X. Hu. 2015. Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing open pit mine, China. Natural Hazards 75 (2):1833–52. doi:https://doi.org/10.1007/s11069-014-1401-3.
  • Su, H., N. Kang, B. Shi, H. Ji, Y. Li, and J. Shi. 2021. Simultaneous thermal analysis on the dynamical oxygen-lean combustion behaviors of coal in a O2/N2/CO2 atmosphere. Journal of the Energy Institute 96:128–39. doi:https://doi.org/10.1016/j.joei.2021.03.003.
  • Suuberg, E. M. 1988. Significance of heat transport effects in determining coal pyrolysis rates. Energy & Fuels 2 (4):593–96. doi:https://doi.org/10.1021/ef00010a031.
  • Tang, Y. 2018. Experimental investigation of applying MgCl2 and phosphates to synergistically inhibit the spontaneous combustion of coal. Journal of the Energy Institute 91 (5):639–45. doi:https://doi.org/10.1016/j.joei.2017.06.006.
  • Tian, B., Y. Y. Qiao, Y. Y. Tian, and Q. Liu. 2016. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG–FTIR. Journal of Analytical and Applied Pyrolysis 121:376–86. doi:https://doi.org/10.1016/j.jaap.2016.08.020.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli. 2011. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520 (1–2):1–19. doi:https://doi.org/10.1016/j.tca.2011.03.034.
  • Wang, H., B. Z. Dlugogorski, and E. M. Kennedy. 2003. Coal oxidation at low temperatures: Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling. Progress in Energy and Combustion Science 29 (6):487–513. doi:https://doi.org/10.1016/S0360-1285(03)00042-X.
  • Wang, H., S. Guo, Y. Xie, H. Zhao, H. Wang, and W. Wang. 2020. Study on competitive adsorption characteristics of CO/CO2/CH4 multi-component low concentration gases in coal. Energy Sources Part A-Recovery Util Environ Eff 1–15. doi:10.1080/15567036.2020.1844347.
  • Wang, K., T. Han, J. Deng, and Y. Zhang. 2022a. Comparison of combustion characteristics and kinetics of Jurassic and carboniferous-Permian coals in China. Energy 254:124315. doi: https://doi.org/10.1016/j.energy.2022.124315.
  • Wang, K., L. Hu, W. Sun, and H. Fan. 2022b. Influences of the pre-oxidation time on coal secondary spontaneous combustion behaviors by temperature-programmed technique. International Journal of Coal Preparation and Utilization 2022:1–13. doi:10.1080/19392699.2022.2031177.
  • Wang, K., Y. Li, Y. Zhang, and J. Deng. 2022c. An approach for evaluation of grading forecasting index of coal spontaneous combustion by temperature-programmed analysis. Environmental Science and Pollution Research. doi:10.1007/s11356-022-22529-4.
  • Wang, Z. R., L. Ni, X. Liu, J. C. Jiang, and R. Wang. 2014. Effects of N2/CO2 on explosion characteristics of methane and air mixture. Journal of Loss Prevention in the Process Industries 31:10–15. doi:https://doi.org/10.1016/j.jlp.2014.06.004.
  • Wang, K., Z. Wang, X. Zhai, and H. Jiang. 2022d. An experimental investigation of early warning index for coal spontaneous combustion with consideration of particle size: A case study. International Journal of Coal Preparation and Utilization 1–15. doi:10.1080/19392699.2022.2036730.
  • Wolde-Rufael, Y. 2010. Coal consumption and economic growth revisited. Applied Energy 87 (1):160–67. doi:https://doi.org/10.1016/j.apenergy.2009.05.001.
  • Wu, S., Z. Jin, and C. Deng. 2019. Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal. Fuel 239:87–96. doi:10.1016/j.fuel.2018.11.011.
  • Wu, D., G. Liu, S. Chen, and R. Sun. 2015. An experimental investigation on heating rate effect in the thermal behavior of perhydrous bituminous coal during pyrolysis. Journal of Thermal Analysis and Calorimetry 119 (3):2195–203. doi:https://doi.org/10.1007/s10973-015-4401-y.
  • Wutti, R., J. Petek, and G. Staudinger. 1996. Transport limitations in pyrolysing coal particles. Fuel 75 (7):843–50. doi:10.1016/0016-2361(96)00021-X.
  • Yan, B., Y. Cheng, Y. Jin, and C. Y. Guo. 2012. Analysis of particle heating and devolatilization during rapid coal pyrolysis in a thermal plasma reactor. Fuel Processing Technology 100:1–10. doi:http://doi.org/10.1016/j.fuproc.2012.02.009.
  • Zhai, X., H. Ge, C. M. Shu, D. Obracaj, K. Wang, and B. Laiwang. 2020. Effect of the heating rate on the spontaneous combustion characteristics and exothermic phenomena of weakly caking coal at the low-temperature oxidation stage. Fuel 268:117327. doi:http://doi.org/10.1016/j.fuel.2020.117327.
  • Zhang, D., X. Cen, W. Wang, J. Deng, H. Wen, Y. Xiao, and C. M. Shu. 2021a. The graded warning method of coal spontaneous combustion in Tangjiahui Mine. Fuel 288:119635. doi:10.1016/j.fuel.2020.119635.
  • Zhang, Y., Y. Li, Y. Huang, S. Li, and W. Wang. 2018. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology. Journal of Thermal Analysis and Calorimetry 131 (3):2963–74. doi:https://doi.org/10.1007/s10973-017-6738-x.
  • Zhang, Y. N., P. Shu, J. Deng, S. K. Chen, and X. N. Li. 2021b. Preparation and properties of ammonium polyphosphate microcapsules for coal spontaneous combustion prevention. International Journal of Coal Preparation and Utilization 1–13. doi:10.1080/19392699.2021.1932846.
  • Zhang, Y. N., P. Shu, J. Deng, Z. Duan, L. Li, and L. Zhang. 2022. Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion. Energy 254:124211. doi:10.1016/j.energy.2022.124211.
  • Zhang, Y. Y., Z. Zhang, M. Zhu, F. Cheng, and D. Zhang. 2019. Decomposition of key minerals in coal gangues during combustion in O2/N2 and O2/CO2 atmospheres. Applied Thermal Engineering 148:977–83. doi:10.1016/j.applthermaleng.2018.11.113.
  • Zhao, J., S. Lu, J. Song, Y. Zhang, Q. Zeng, and C. M. Shu. 2022. Evaluation of oxygen concentration on low-temperature oxidation kinetics of long-flame coal. Journal of Loss Prevention in the Process Industries 79:104841. doi: 10.1016/j.jlp.2022.104841.
  • Zheng, Y., Q. Li, G. Zhang, Y. Zhao, P. Zhu, X. Ma, and X. Liu. 2020. Effect of multi-component gases competitive adsorption on coal spontaneous combustion characteristics under goaf conditions. Fuel Processing Technology 208:106510. doi:https://doi.org/10.1016/j.fuproc.2020.106510.
  • Zhu, H., S. Guo, Y. Xie, and H. Zhao. 2021. Molecular simulation and experimental studies on CO2 and N2 adsorption to bituminous coal. Environmental Science and Pollution Research 28 (13):15673–86. doi:https://doi.org/10.1007/s11356-020-11722-y.
  • Zhu, Y., D. Wang, Z. Shao, C. Xu, X. Zhu, X. Qi, and F. Liu. 2019. A statistical analysis of coalmine fires and explosions in China. Process Safety and Environmental Protection 121:357–66. doi:10.1016/j.psep.2018.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.