132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancement of ultrafine coal slime flotation using high-shear pretreatment and polyvinylpyrrolidone

ORCID Icon, , , & ORCID Icon
Pages 2136-2151 | Received 20 Oct 2022, Accepted 21 Dec 2022, Published online: 01 Jan 2023

References

  • Alabresm, A., Y. P. Chen, A. W. Decho, and J. Lead. 2018. A novel method for the synergistic remediation of oil-water mixtures using nanoparticles and oil-degrading bacteria. The Science of the Total Environment 630:1292–97. doi:10.1016/j.scitotenv.2018.02.277.
  • Barbian, N., E. Ventura-Medina, and J. J. Cilliers. 2003. Dynamic froth stability in froth flotation. Minerals Engineering 16 (11):1111–16. doi:10.1016/j.mineng.2003.06.010.
  • Barry, B., M. S. Klima, and F. S. Cannon. 2017. Effects of desliming and hydroacoustic cavitation treatment on the flotation of ultrafine bituminous coal. International Journal of Coal Preparation and Utilization 37 (4):213–24. doi:10.1080/19392699.2016.1149475.
  • Chen, Y., B. Zhou, X. Zhang, S. Yang, and W. Huang. 2022. Understanding the role of kerosene on the coal particle and bubble attachment process. Fuel 307:121915. doi:10.1016/j.fuel.2021.121915.
  • Coleman, R. D., B. D. Sparks, A. Majid, and F. N. Toll. 1995. Agglomeration-flotation - recovery of hydrophobic components from oil sands fine tailings. Fuel 74 (8):1156–61. doi:10.1016/0016-2361(95)00067-f.
  • Dey, S. 2012. Enhancement in hydrophobicity of low rank coal by surfactants — a critical overview. Fuel Processing Technology 94 (1):151–58. doi:10.1016/j.fuproc.2011.10.021.
  • Engel, M. D., P. D. Middlebrook, and G. J. Jameson. 1997. Advances in the study of high intensity conditioning as a means of improving mineral flotation performance. Minerals Engineering 10 (1):55–68. doi:10.1016/s0892-6875(96)00131-8.
  • Hu, S., F. Jiang, B. Zhao, Y. Chen, C. Wu, J. Li, and K. Liu. 2021. The enhancement on rheology, flowability, and stability of coal water slurry prepared by multipeak gradation technology. Energy & Fuels 35 (3):2006–15. doi:10.1021/acs.energyfuels.0c03032.
  • Jameson, G. J. 2010. New directions in flotation machine design. Minerals Engineering 23 (11):835–41. doi:10.1016/j.mineng.2010.04.001.
  • Lin, Q., Y. Mei, W. Huang, B. Zhang, and K. Liu. 2022. Understanding the role of polyvinylpyrrolidone on ultrafine low-rank coal flotation. ACS Omega 7 (12):10196–204. doi:10.1021/acsomega.1c06701.
  • Li, C., M. Xu, and H. Zhang. 2020. Efficient separation of high-ash fine coal by the collaboration of nanobubbles and polyaluminum chloride. Fuel 260. doi:10.1016/j.fuel.2019.116325.
  • Ma, F., Y. Tao, and Y. Xian. 2021. Study on maceral liberation characteristics of ball grinding and rod grinding for low-rank coal. International Journal of Coal Preparation Util (10):1–17. doi:10.1080/19392699.2021.1916917.
  • Mehrotra, V. P., K. V. S. Sastry, and B. W. Morey. 1983. Review of oil agglomeration techniques for processing of fine coals. International Journal of Mineral Processing 11 (3):175–201. doi:10.1016/0301-7516(83)90025-x.
  • Mei, Y., Q. Lin, C. Wu, W. Huang, D. Cao, and K. Liu. 2022. Efficient separation of ultrafine coal assisted by selective adsorption of polyvinylpyrrolidone. Minerals-Basel 12 (6):725. doi:10.3390/min12060725.
  • Ng, W. S., L. Cooper, L. A. Connal, E. Forbes, G. J. Jameson, and G. V. Franks. 2018. Tuneable collector/depressant behaviour of xanthate-functional temperature-responsive polymers in the flotation of copper sulfide: Effect of shear and temperature. Minerals Engineering 117:91–99. doi:10.1016/j.mineng.2017.12.008.
  • Norori-McCormac, A., P. R. Brito-Parada, K. Hadler, K. Cole, and J. J. Cilliers. 2017. The effect of particle size distribution on froth stability in flotation. Separation and Purification Technology 184:240–47. doi:10.1016/j.seppur.2017.04.022.
  • Ozer, M., O. M. Basha, and B. Morsi. 2016. Coal-agglomeration processes: A review. International Journal of Coal Preparation and Utilization 37 (3):131–67. doi:10.1080/19392699.2016.1142443.
  • Ozmak, M., and Z. Aktas. 2006. Coal froth flotation: Effects of reagent adsorption on the froth structure. Energy & Fuels 20 (3):1123–30. doi:10.1021/ef0503358.
  • Palchoudhury, S., and J. R. Lead. 2014. A facile and cost-effective method for separation of oil–water mixtures using polymer-coated iron oxide nanoparticles. Environmental Science & Technology 48 (24):14558–63. doi:10.1021/es5037755.
  • Pascoe, R. D., and B. A. Wills. 1994. Selective aggregation of ultrafine hematite and quartz under high-shear conditions with conventional flotation collectors. Minerals Engineering 7 (5–6):647–56. doi:10.1016/0892-6875(94)90096-5.
  • Patil, D. P., J. R. G. Andrews, and P. H. T. Uhlherr. 2001. Shear flocculation—kinetics of floc coalescence and breakage. International Journal of Mineral Processing 61 (3):171–88. doi:10.1016/s0301-7516(00)00036-3.
  • Raghavan, P., S. Chandrasekhar, V. Vogt, and E. Gock. 2004. Separation of titanoferrous impurities from kaolin by high shear pretreatment and froth flotation. Applied Clay Science 25 (1–2):111–20. doi:10.1016/j.clay.2003.09.003.
  • Tian, Q., Y. Zhang, G. Li, and Y. Wang. 2017. Floc-flotation of ultrafine coal slimes achieved by flotation column. Energy Sources Part A-Recovery Utilization and Environmental Effects 39 (9):899–904. doi:10.1080/15567036.2016.1273281.
  • Turian, R. M., J. F. Attal, D. J. Sung, and L. E. Wedgewood. 2002. Properties and rheology of coal-water mixtures using different coals. Fuel 81 (16):2019–33. doi:10.1016/s0016-2361(02)00149-7.
  • van Netten, K., R. Moreno-Atanasio, and K. P. Galvin. 2014. Fine particle beneficiation through selective agglomeration with an emulsion binder. Industrial & Engineering Chemistry Research 53 (40):15747–54. doi:10.1021/ie5027502.
  • Wang, G., X. Bai, C. Wu, W. Li, K. Liu, and A. Kiani. 2018. Recent advances in the beneficiation of ultrafine coal particles. Fuel Processing Technology 178:104–25. doi:10.1016/j.fuproc.2018.04.035.
  • Wang, J., and L. Wang. 2018. Improving column flotation of oxidized or ultrafine coal particles by changing the flow pattern of air supply. Minerals Engineering 124:98–102. doi:10.1016/j.mineng.2018.05.018.
  • Wang, H., H. Zhu, J. Zhu, S. Shao, D. Huang, J. Liu, and T. Li. 2020. Effect of energy consumption on dispersion and recovery of coal slimes in a mechanical flotation cell. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 42 (15):1882–90. doi:10.1080/15567036.2019.1604901.
  • Xia, Y., R. Zhang, Y. Xing, and X. Gui. 2019. Improving the adsorption of oily collector on the surface of low-rank coal during flotation using a cationic surfactant: An experimental and molecular dynamics simulation study. Fuel 235:687–95. doi:10.1016/j.fuel.2018.07.059.
  • Xu, M., Y. Xing, X. Gui, Y. Cao, D. Wang, and L. Wang. 2017. Effect of ultrasonic pretreatment on oxidized coal flotation. Energy & Fuels 31 (12):14367–73. doi:10.1021/acs.energyfuels.7b02115.
  • Zhao, X., Y. Tang, B. Zhao, C. Wu, J. Li, C. Chu, K. Liu, and Y. Ding. 2021. Collecting behaviors of high internal phase (HIP) emulsion in flotation of ultrafine high-ash content coal slime. International Journal of Coal Preparation and Utilization 42 (9):2635–55. doi:10.1080/19392699.2020.1870221.
  • Zou, W. J., L. Gong, J. Huang, Z. J. Zhang, C. B. Sun, and H. B. Zeng. 2019. Adsorption of hydrophobically modified polyacrylamide P(AM-NaAA-C(16)DMAAC) on model coal and clay surfaces and the effect on selective flocculation of fine coal. Minerals Engineering 142:105887. doi:10.1016/j.mineng.2019.105887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.