127
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Effects of a cyclonic microbubble flotation column operating parameters on coal process responses

, , , ORCID Icon, , & show all
Pages 851-865 | Received 09 May 2023, Accepted 20 Jun 2023, Published online: 26 Jun 2023

References

  • Alves Dos Santos, N., and R. Galery. 2018. Modelling flotation per size liberation class – Part 2 – Evaluating flotation per class. Minerals Engineering 129:24–36. doi:10.1016/j.mineng.2018.09.013.
  • Ata, S., N. Ahmed, and G. J. Jameson. 2003. A study of bubble coalescence in flotation froths. International Journal of Mineral Processing 72 (1–4):255–66. doi:10.1016/S0301-7516(03)00103-0.
  • Bournival, G., S. Ata, and G. J. Jameson. 2017. Bubble and froth stabilizing agents in froth flotation. Mineral Processing and Extractive Metallurgy Review 38 (6):366–87. doi:10.1080/08827508.2017.1323747.
  • Bu, X. 2018. Correlation study on collection zone pressure fluctuations and hydrodynamics in a flotation column (in Chinese). PhD diss., Xuzhou, China: China University of Mining & Technology.
  • Bu, X., G. Xie, Y. Chen, and C. Ni. 2017. The order of kinetic models in coal fines flotation. International Journal of Coal Preparation and Utilization 37 (3):113–23. doi:10.1080/19392699.2016.1140150.
  • Bu, X., G. Xie, Y. Peng, and Y. Chen. 2016. Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology. International Journal of Mineral Processing 157:175–83. doi:10.1016/j.minpro.2016.11.006.
  • Bu, X., T. Zhang, Y. Chen, Y. Peng, G. Xie, and E. Wu. 2018. Comparison of mechanical flotation cell and cyclonic microbubble flotation column in terms of separation performance for fine graphite. Physicochemical Problems of Mineral Processing 54 (3):732–40. doi:10.5277/ppmp1873.
  • Bu, X., T. Zhang, Y. Chen, G. Xie, and Y. Peng. 2020. Comparative study of conventional cell and cyclonic microbubble flotation column for upgrading a difficult-to-float Chinese coking coal using statistical evaluation. International Journal of Coal Preparation and Utilization 40 (6):359–75. doi:10.1080/19392699.2017.1359577.
  • Bu, X., T. Zhang, Y. Peng, G. Xie, and E. Wu. 2018. Multi-stage flotation for the removal of ash from fine graphite using mechanical and centrifugal forces. Minerals 8 (1):15. doi:10.3390/min8010015.
  • Cheng, G., Y. X. Yu, L. Q. Ma, W. C. Xia, and H. X. Xu. 2017. Energy feature of a multi-flow column flotation process. Physicochemical Problems of Mineral Processing 53 (2):1264–84. doi:10.5277/ppmp170245.
  • Deighton, H. (2001). Investigation of the physical significance of floatability component liberation and particle size for flotation modelling. BEHons thesis., The University of Queensland.
  • Deng, X., B. Xing, J. Liu, C. Zhang, C. Shi, and Y. Lu. 2017. Bubble size distribution in cyclonic zone of a novel flotation column. Separation Science and Technology 52 (9):1635–42. doi:10.1080/01496395.2017.1295072.
  • Falutsu, M., and G. S. Dobby. 1989. Direct measurement of froth drop back and collection zone recovery in a laboratory flotation column. Minerals Engineering 2 (3):377–86. doi:10.1016/0892-6875(89)90006-X.
  • Fan, G., J. Liu, Y. Cao, and T. Huo. 2014. Optimization of fine ilmenite flotation performed in a cyclonic-static micro-bubble flotation column. Physicochemical Problems of Mineral Processing 50 (2):823–34. doi:10.5277/ppmp140232.
  • Farrokhpay, S. 2011. The significance of froth stability in mineral flotation - a review. Advances in Colloid and Interface Science 166 (1–2):1–7. doi:10.1016/j.cis.2011.03.001.
  • Hadler, K., M. Greyling, N. Plint, and J. J. Cilliers. 2012. The effect of froth depth on air recovery and flotation performance. Minerals Engineering 36-38:248–53. doi:10.1016/j.mineng.2012.04.003.
  • Hu, W., J. Liu, Z. Li, and J. Zhang. 2010. Research on factors influencing gas hold-up of a cyclonic-static micro-bubble flotation column (in Chinese). Journal of China University of Mining and Technology 39 (4):617–21.
  • Jameson, G. J. 2010. Advances in fine and coarse particle flotation. Canadian Metallurgical Quarterly 49 (4):325–30. doi:10.1179/cmq.2010.49.4.325.
  • Jameson, G. J. 2012. The effect of surface liberation and particle size on flotation rate constants. Minerals Engineering 36-38:132–37. doi:10.1016/j.mineng.2012.03.011.
  • Li, H., A. Afacan, Q. Liu, and Z. Xu. 2015. Study interactions between fine particles and micron size bubbles generated by hydrodynamic cavitation. Minerals Engineering 84:106–15. doi:10.1016/j.mineng.2015.09.023.
  • Li, G., Y. Cao, J. Liu, and D. Wang. 2012. Cyclonic flotation column of siliceous phosphate ore. International Journal of Mineral Processing 110:6–11. doi:10.1016/j.minpro.2012.03.008.
  • Li, Y., H. Pan, N. Li, W. Jiang, Y. Li, W. Zhang, and Z. Peng. 2020. Design and experimental study of a modified cyclonic microbubble flotation column system. International Journal of Coal Preparation and Utilization 40 (3):223–31. doi:10.1080/19392699.2017.1405945.
  • Li, B., D. Tao, Z. Ou, and J. Liu. 2003. Cyclo-microbubble column flotation of fine coal. Separation Science and Technology 38 (5):1125–40. doi:10.1081/SS-120018127.
  • Li, X., H. Xu, J. Liu, J. Zhang, J. Li, and Z. Gui. 2016. Cyclonic state micro-bubble flotation column in oil-in-water emulsion separation. Separation and Purification Technology 165:101–06. doi:10.1016/j.seppur.2016.01.021.
  • Massinaei, M., M. Kolahdoozan, M. Noaparast, M. Oliazadeh, J. Yianatos, R. Shamsadini, and M. Yarahmadi. 2009. Froth zone characterization of an industrial flotation column in rougher circuit. Minerals Engineering 22 (3):272–78. doi:10.1016/j.mineng.2008.08.003.
  • Ni, C., M. Jin, Y. Chen, G. Xie, Y. Peng, and W. Xia. 2017. Improving the recovery of coarse-coal particles by adding premineralization prior to column flotation. International Journal of Coal Preparation and Utilization 37 (2):87–99. doi:10.1080/19392699.2016.1140151.
  • Ni, C., G. Xie, B. Liu, Y. Peng, J. Sha, and W. Xia. 2015. A design of an inclined froth zone in column flotation device to reduce ash content in clean coal. International Journal of Coal Preparation and Utilization 35 (6):281–94. doi:10.1080/19392699.2015.1019065.
  • Peng, Y., C. Ni, J. Tan, J. Sha, and G. Xie. 2016. Separation performance of flotation column with inclined plates in the froth zone. International Journal of Mineral Processing 148:124–27. doi:10.1016/j.minpro.2016.01.023.
  • Pita, F. 2017. Influence of froth height on column flotation of kaolin ore. Minerals 7 (12):235. doi:10.3390/min7120235.
  • Rubio, J., E. Matiolo, and M. de Paiva. 2015. Recovery of phosphate ores in the modified three-product column (3PC) flotation cell. Minerals Engineering 72:121–28. doi:10.1016/j.mineng.2014.10.012.
  • Sun, F., and X. Tao. 2017. Influence of “swirling flow” on gas hold up and bubble size in flotation column (in Chinese). Metal Mine 12:115–18. doi:10.19614/j.cnki.jsks.2017.12.023.
  • Tao, D. 2005. Role of bubble size in flotation of coarse and fine particles-A review. Separation Science and Technology 39 (4):741–60. doi:10.1081/SS-120028444.
  • Ventura-Medina, E., N. Barbian, and J. J. Cilliers. 2004. Solids loading and grade on mineral froth bubble lamellae. International Journal of Mineral Processing 74 (1):189–200. doi:10.1016/j.minpro.2003.11.001.
  • Vera, M. A., J. P. Franzidis, and E. V. Manlapig. 1999. Simultaneous determination of collection zone rate constant and froth zone recovery in a mechanical flotation environment. Minerals Engineering 12 (10):1176. doi:10.1016/S0892-6875(99)00103-X.
  • Wang, B., and H. Jiang. 2021. Research and application of flotation column (in Chinese). The Chinese Journal of Nonferrous Metals 31 (4):1027–41.
  • Wang, G., A. Nguyen, S. Mitra, J. Joshi, G. Jameson, and G. Evans. 2016. A review of the mechanisms and models of bubble-particle detachment in froth flotation. Separation and Purification Technology 170:155–72. doi:10.1016/j.seppur.2016.06.041.
  • Wang, M., C. Ni, X. Bu, Y. Peng, G. Xie, Z. Tan, and H. Yu. 2023. CFD-PBM simulation of the column flotation unit of FCMC: Importance of gas-liquid interphase forces models. Canadian Journal of Chemical Engineering. doi:10.1002/cjce.24828.
  • Wang, L., Y. Wang, X. Yan, A. Wang, and Y. Cao. 2017. A numerical study on efficient recovery of fine-grained minerals with vortex generators in pipe flow unit of a cyclonic-static micro bubble flotation column. Chemical Engineering Science 158:304–13. doi:10.1016/j.ces.2016.10.037.
  • Wang, A., X. Yan, L. Wang, Y. Cao, and J. Liu. 2015. Effect of cone angles on single-phase flow of a laboratory cyclonic-static micro-bubble flotation column: Ply measurement and CFD simulations. Separation and Purification Technology 149:308–14. doi:10.1016/j.seppur.2015.06.004.
  • Welsby, S. D. D., S. M. S. M. Vianna, and J. P. Franzidis. 2010. Assigning physical significance to floatability components. International Journal of Mineral Processing 97 (1–4):59–67. doi:10.1016/j.minpro.2010.08.002.
  • Xu, G. (2018). Mechanism of bubble-particle detachment at the static pulp/froth interface (in Chinese). PhD diss., China University of Mining & Technology.
  • Xu, G., X. Bu, Y. Mao, C. Ni, Y. Peng, and G. Xie. 2020. Combined column and cell flotation process for improving clean coal quality: Laboratory-scale and industry-scale studies. Energy Sources Part A-Recovery Utilization and Environmental Effects 42 (21):2678–87. doi:10.1080/15567036.2019.1618981.
  • Yan, X., R. Shi, Y. Xu, A. Wang, Y. Liu, L. Wang, and Y. Cao. 2016. Bubble behaviors in a lab-scale cyclonic-static micro-bubble flotation column. Asia-Pacific Journal of Chemical Engineering 11 (6):939–48. doi:10.1002/apj.2028.
  • Yianatos, J. B. 2007. Fluid flow and kinetic modelling in flotation related processes: Columns and mechanically agitated cells - a review. Chemical Engineering Research & Design 85 (A12):1591–603. doi:10.1205/cherd07068.
  • Zhang, H., J. Liu, and Y. Wang. 2006. Separating principle and parameter controlling for cyclonic-static microbubble flotation column (in Chinese). China Mining Mgazine 5:70–72.
  • Zhang, H., J. Liu, Y. Wang, Y. Cao, Z. Ma, and X. Li. 2013. Cyclonic-static micro-bubble flotation column. Minerals Engineering 45:1–3. doi:10.1016/j.mineng.2013.01.006.
  • Zhang, M., T. Li, and G. Wang. 2017. A CFD study of the flow characteristics in a packed flotation column: Implications for flotation recovery improvement. International Journal of Mineral Processing 159:60–68. doi:10.1016/j.minpro.2017.01.004.
  • Zhou, S., X. Wang, X. Bu, H. Shao, Y. Hu, M. Alheshibri, B. Li, C. Ni, Y. Peng, and G. Xie. 2020. Effects of emulsified kerosene nanodroplets on the entrainment of gangue materials and selectivity index in aphanitic graphite flotation. Minerals Engineering 158:106592. doi:10.1016/j.mineng.2020.106592.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.