1,718
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimation of gross calorific value of coal: A literature review

&
Received 27 Jul 2023, Accepted 30 Mar 2024, Published online: 14 Apr 2024

References

  • Alekhnovich, A. N. 2020. “Estimating the Heating Value of Coals Based on the Composition.” Power Technology and Engineering 10: 2–8. doi:10.1007/s10749-020-01147-5.
  • Alexandridis, A. K., and A. D. Zaprants. 2013. “Wavelet Neural Networks: A Practical Guide.” Neural Networks 42: 1–27. doi:10.2139/ssrn.1923020.
  • Balaeva, Y. S., D. V. Miroshnichenko, and Y. S. Kaftan. 2018. “Method for Calculating the Gross Calorific Value of Coal on a Moist Ash-Free Basis.” Solid Fuel Chemistry 52 (5): 279–288. doi:10.3103/S0361521918030023.
  • Begum, N., D. Chakravarty, and B. S. Das. 2019. “Estimation of Gross Calorifc Value of Bituminous Coal Using Various Coal Properties and Reflectance Spectra.” International Journal of Coal Preparation & Utilization 42: 979–985. doi:10.1080/19392699.2019.1621301.
  • Behnamfard, A., and R. Alaei. 2016. “Estimation of Coal Proximate Analysis Factors and Calorifc Value by Multivariable Regression Method and Adaptive Neuro-Fuzzy Inference System (ANFIS.” Internation Journal of Mining and Geo-Engineering 51 (1): 29–35. doi:10.22059/IJMGE.2017.62150.
  • Bhadeshia, H. K. R. [2023-09-22]. Thermal analysis techniques – Differential thermal analysis. Cambridge, United Kingdom: University of Cambridge, Material Science and Metallurgy.
  • Bonyadi, M. R., and Z. Michalewicz. 2017. “Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review.” Evolutionary Computation 25 (1): 1–54. doi:10.1162/EVCO_r_00180.
  • Bui, H. B., H. Nguyen, Y. Choi, X. N. Bui, T. Nguyen-Thoi, and Y. Zandi. 2019. “A Novel Artificial Intelligence Technique to Estimate the Gross Calorifc Value of Coal Based on Meta-Heuristic and Support Vector Regression Algorithms.” Applied Sciences 9 (22): 4868. doi:10.3390/app9224868.
  • Buyukkanber, K., H. Haykiri-Acma, and S. Yaman. 2023. “Calorific Value Prediction of Coal and Its Optimization by Machine Learning Based Limited Samples in a Wide Range.” Energy 277 (6): 127666. doi:10.1016/j.energy.2023.127666.
  • Chelgani, S. C. 2019. “Exploring Relationships of Gross Calorific Value and Valuable Elements with Conventional Coal Properties for North Korean Coals.” International Journal of Mining Science and Technology 29 (1): 867–871. doi:10.1016/j.ijmst.2019.09.005.
  • Chelgani, S. C. 2021. “Estimation of Gross Calorific Value Based on Coal Analysis Using an Explainable Artificial Intelligence.” Machine Learning with Applications 6 (1): 100116. doi:10.1016/j.mlwa.2021.100116.
  • Cheng, Y., L. Xu, X. Li, and L. Chen. 2015. “Online Estimation of Coal Calorific Value from Combustion Radiation for Coal-Fired Boilers.” Combust Science Technology 187 (10): 1487–1503. doi:10.1080/00102202.2015.1019618.
  • Cortes, C., and V. Vapnik. 1995. “Support Vector Networks.” Machine Learning 20 (1): 273–297. doi:10.1007/BF00994018.
  • Erik, N. Y., and I. Yilmaz. 2011. “On the Use of Conventional and Soft Computing Models for Prediction of Gross Calorific Value (GCV) of Coal.” International Journal of Coal Preparation & Utilization 31 (1): 32–59. doi:10.1080/19392699.2010.534683.
  • Feng, Q., J. Zhang, X. Zhang, and S. Wen. 2015. “Proximate Analysis Based Prediction of Gross Calorific Value of Coals: A Comparision of Support Vector Machine, Alternating Conditional Expectation and Artificial Neural Network.” Fuel Processing Technology 129 (8): 120–129. doi:10.1016/j.fuproc.2014.09.001.
  • Ghugare, S. B., and S. S. Tambe. 2016. “Genetic Programming Based High Performing Correlations for Prediction of Higher Heating Value of Coals of Different Ranks and from Diverse Geographies.” Journal of the Energy Institute 90 (3): 476–484. doi:10.1016/j.joei.2016.03.002.
  • Given, P. H., D. Weldon, and J. H. Zoeller. 1986. “Calculation of Calorific Values of Coals from Ultimate Analysis: Theoretical Basis and Geochemical Implications.” Fuel 65 (6): 849–854. doi:10.1016/0016-2361(86)90080-3.
  • Go, A. W., R. C. Agapay, Y. H. Ju, and A. T. Conag. 2019. “Unified Semi-Empirical Models for Predicting or Estimating the Heating Value of Coal and Related Properties – Theoretical Basis and Thermochemical Implications.” Combustion Science and Technology 192 (8): 1449–1474. doi:10.1080/00102202.2019.1617705.
  • Gomez, Y. R., R. C. Hernandez, J. E. Guerrero, and E. Mejia-Ospino. 2018. “FTIR-PAS Coupled to Partial Least Squares for Prediction of Ash Content, Volatile Matter, Fixed Carbon and Calorific Value of Coal.” Fuel 226 (3): 536–544. doi:10.1016/j.fuel.2018.04.040.
  • Hagen, H., and P. Robinson. 2002. Derivation of methodology capable of identifying suitable collectors for coal flotation by using surface dependant techniques. Thesis, CapeTown: Cape Peninsula University of Technology.
  • Hamer, W., W. Booysen, and E. H. Mathews. 2017. “A Practical Approach to Managing Uncertainty in the Measurement and Verification of Energy Efficiency Savings.” South African Journal of Industrial Engineering 28 (3): 128–146. doi:10.7166/28-3-1850.
  • Hemachandra, S., and R. V. Satyanarayana. 2013. “Co-Active Neuro-Fuzzy Inference System for Prediction of Electric Load.” International Journal of Electrical and Electronics 3 (2): 217–222.
  • Ho, T. K. 1998. “The Random Subspace Method for Constructing Decision Forests.” IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (8): 832–844. doi:10.1109/34.709601.
  • Huda, M. 2014. “Development of New Equations for Estimating GCV of Indonesioan Coals.” Indonesian Mining Journal 12 (1): 10–19.
  • IBM (International Business Machines). Understanding Machine Learning. 2018. Machine Learning. Limited Edition, 75. USA: John Wiley & Sons, Inc.
  • Jang, J.-S. R. 1991. “Fuzzy Modeling Using Generalized Neural Networks and Kalman Filter Algorithm.” 9th National Conference on Artificial Intelligence. Anaheim, CA, USA. 762–767.
  • Jin-Hui, F. U. 2016. “Application of SVM in the Estimation of GCV of Coal and a Comparison Study of the Accuracy and Robustness of SVM.” 23rd International Conference on Management Science & Engineering. Olten, Switzerland.
  • Kaur H.2023. Artificial Neural Networks and its Applications. Noida, India:Geegs for Geegs.
  • Kavsek, D., A. Bednarova, M. Biro, R. Kranvogl, D. B. Voncina, and E. Beinrohr. 2013. “Characterization of Slovenian Coal and Estimation of Coal Heating Value Based on Proximate Analysis Using Regression and Artificial Neural Networks.” Central European Journal of Chemistry 11 (9): 1481–1491. doi:10.2478/s11532-013-0280-x.
  • Kok, M. V., and C. Keskin. 2001. “Calorific Value Determination of Coals by DTA and ASTM Methods.” Journal of Thermal Analysis and Calorimetry 64 (3): 1265–1270. doi:10.1023/A:1011569701909.
  • Koza, J. R., and R. Poli. 2006. “Genetic Programming.” In Search Methodologies, edited by E K Burke and G. Kendall, 127–164. Ireland: Springer Science & Business Media.
  • Letelier, J. C., and P. P. Weber. 2000. “Spike Sorting Based on Discrete Wavelet Transform Coefficients.” Journal of Neuroscience Methods 101 (2): 93–106. doi:10.1016/S0165-0270(00)00250-8.
  • Liu, P., and S. Lv. 2020. “Measurement and Calculation of Calorific Value of Raw Coal Based on Artificial Neural Network Analysis Method.” Thermal Science 24 (00): 3129–3137. doi:10.2298/TSCI191106087L.
  • Lu, Z., J. Mo, S. Yao, J. Zhao, and J. Lu. 2017. “Rapid Determination of the Gross Calorific Value of Coal Using Laser Induced Breakdown Spectroscopy Coupled with Artificial Networks and Genetic Algorithm.” Energy & Fuels 31 (4). doi:10.1021/acs.energyfuels.7b00025.
  • Lu, P., Z. Zhuo, W. Zhang, J. Tang, T. Xing, T. Sun, and J. Lu. 2021. “Determination of Calorific Value in Coal LIBS Coupled with Acoustic Normalization.” Applied Physics B 127 (6): 82. doi:10.1007/s00340-021-07626-5.
  • Mahapatra, D. 2016. A review on steam coal analysis - Calorific value. India: Trimex Industries Pvt. Ltd.
  • Majumder, A. K., R. Jain, P. Banerjee, and J. P. Barnwal. 2008. “Development of a New Proximate Analysis Based Correlation to Predict Calorifc Value of Coal.” Fuel 87 (13–14): 3077–3081. doi:10.1016/j.fuel.2008.04.008.
  • Mason, D. M., and K. N. Gandhi. 1983. “Formulas for Calculating the Calorific Value of Coal and Coal Chars: Development, Tests and Uses.” Fuel Processing Technology 7 (1): 11–22. doi:10.1016/0378-3820(83)90022-X.
  • Mathews, E., R. W. S. Burt, C. S. Singh, R. van Liere, and World Coal Institute. 2009. Putney, London: World Coal Institute.
  • Matin, S. S., and S. C. Chelgani. 2016. “Estimation of Coal Gross Calorific Value Based on Various Analyses by Random Forest Method.” Fuel 177 (2): 274–278. doi:10.1016/j.fuel.2016.03.031.
  • Mesroghli, S., E. Jorjani, and S. Chehreh Chelgani. 2009. “Estimation of Gross Calorific Value Based on Coal Analysis Using Regression and Artificial Neural Networks.” International Journal of Coal Geology 79 (1): 49–54. doi:10.1016/j.coal.2009.04.002.
  • Munoz-Guillena, M. J., A. Linares-Solano, and C. S. de Lecea. 1992. “Determination of Calorific Values of Coals by Differential Thermal Analysis.” Fuel 71 (5): 579–583. doi:10.1016/0016-2361(92)90157-J.
  • Ozbayoglu, A. M., M. W. Ozbayoglu, and G. Ozbayoglu. 2012. Comparison of Gross Calorific Value Estimation of Turkish Coal Using Regression and Neural Networks Techniques. XXVI Internationla Mineral Processing Congress, 24-28 September 2012, New Delhi, India.
  • Patel, S. U., B. J. Kumar, Y. P. Badhe, B. K. Sharma, S. Saha, S. Biswas, A. Chaudhury et al. 2007. “Estimation of Gross Calorific Value of Coals Using Artificial Neural Networks.” Fuel 86 (3): 334–344. doi:10.1016/j.fuel.2006.07.036.
  • Qiang, F., and Z. Xiaoyang. 2006. “The Principle and Application of Projection Pursuit Model.” Beijing, China: Science Press.
  • Qi, M., H. Luo, P. Wei, and Z. Fu. 2019. “Estimation of Low Calorific Value of Blended Coals Based on Support Vector Regression and Sensitivity in Coal-Fired Power Plants.” Fuel 236 (1): 1400–1407. doi:10.1016/j.fuel.2018.09.117.
  • Radziemski, L. J., and D. A. Cremers. 2006. Handbook of laser-induced breakdown spectroscopy. New York: John Wiley.
  • Richardson, M. J. 1993. “The Specific Heats of Coals, Cokes and Their Ashes.” Fuel 72 (7): 1047–1053. doi:10.1016/0016-2361(93)90307-N.
  • SABS (South African Bureau of Standards). 2004. SANS 10320:2004 – Evaluation of coal resources and coal reserves. South Africa: SAMCODES - South African Mineral Codes.
  • SABS (South African Bureau of Standards). 2011. SANS 17246:2011 – Coal and Proximate Analysis. South Africa: SAMCODES - South African Mineral Codes.
  • Sarstedt, M., and E. Mooi. 2014. A concise guide to market research. USA: Springer. doi: 10.1007/978-3-642-12541-6_9.
  • Schetcher, I., A. W. Miziolek, W. Andrzej, and P. Vincenzo. 2006. Laser-induced breakdown spectroscopy (LIBS): Fundamentals and applications. Cambridge, UK: Cambridge University Press.
  • Scientific, E. Eurofins Scientific. 2023. Thermogravimetry Differential Thermal Analysis (TG/DTA). Eurofins EAG Laboratories. https://www.eag.com/techniques/phys-chem/thermogravimetry-differential-thermal-analysis-tg-dta/.
  • Seervi, K. 2015. Prediction of calorific value of Indian coals by artificial neural network. Rourkela, India: National Insitute of Technology.
  • Singh, J. P., and S. N. Thakur. 2007. Laser-Induced Breakdown Spectroscopy. 1st Edition, 454. Amsterdam, Netherlands: Elsevier Science.
  • TA Instruments. 2022. DSc 2920 differential scanning calorimeter. USA: TA Instruments.
  • Tan, P., Q. F. Ji Xia, G. Chen, and C. Zhang. 2015. “Estimation of Higher Heating Value of Coal Based on Proximate Analysis Using Support Vector Regression.” Fuel Processing Technology 138 (1): 298–304. doi:10.1016/j.fuproc.2015.06.013.
  • Taylor, S. 2022. Regression Analysis - The estimation of relationships between adependent variable and one or more independent variables. Vancouver, Canada: Corporate Finance Institute. https://corporatefinanceinstitute.com/resources/data-science/regression-analysis/
  • van Aarde, C. 2019. A general approach to develop and assess models estimating coal energy content. South Africa: North-West University.
  • Verma, A. K., T. N. Singh, and M. Monjezi. 2010. “Intelligent Prediction of Heating Value of Coal.” Iranian Journal of Earth Sciences 2 (1): 32–38. doi:sanad.iau.ir/fa/Journal/ijes/Article/917154.
  • Wang, L., X. Wu, X. Gao, Y. Wu, and K. Cen. 2021. “A Method for in-Situ Measurement of Calorific Value of Coal: A Numerical Study.” Thermochimica acta 703 (1): 179011. doi:10.1016/j.tca.2021.179011.
  • Wen, X., S. Jian, and J. Wang. 2017. “Prediction Models of Calorific Value of Coal Based on Wavelet Neural Network.” Fuel 199 (1): 512–522. doi:10.1016/j.fuel.2017.03.012.
  • Xu, L., Y. Cheng, R. Yin, and Q. Zhang. 2014. “Comparative Study of Regression Modeling Methods for Online Coal Calorific Value Prediction from Flame Radiation Features.” Fuel 142 (1): 164–172. doi:10.1016/j.fuel.2014.10.081.
  • Yaun, J., F. U. Zhongguang, and Q. I. Minfang. 2012. “Coal Calorific Value Prediction Based on Projection Pursuit Principle.” TELKOMNIKA Indonesian Journal of Electrical Engineering 10 (6): 1287–1292. doi:10.11591/telkomnika.v10i6.1414.