266
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

β-carbolines norharman and harman in vegetable oils in China

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 193-199 | Received 22 Nov 2019, Accepted 19 Apr 2020, Published online: 03 May 2020

References

  • Alves RC, Mendes E, Oliveira BPP, Casal S. 2010. Norharman and harman in instant coffee and coffee substitutes. Food Chem. 120:1238–1241. doi:10.1016/j.foodchem.2009.11.070
  • Anjum F, Anwar F, Jamil A, Iqbal M. 2006. Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil. J Am Oil Chem Soc. 83:777–784. doi:10.1007/s11746-006-5014-1
  • Bhat R, Reddy KRN. 2017. Challenges and issues concerning mycotoxins contamination in oil seeds and their edible oils: updates from last decade. Food Chem. 215:425–437. doi:10.1016/j.foodchem.2016.07.161
  • De Meester C. 1995. Genotoxic potential of beta-carbolines: A review. Mutat Res. 339:139–153. doi:10.1016/0165-1110(95)90008-X
  • Dong X, Li P, Wei F, Jiang M, Zhao Y, Li G, Chen H, Zhao Y. 2012. The impact of processing on the profile of volatile compounds in sesame oil. Eur J Lipid Sci Tech. 114:277–286. doi:10.1002/ejlt.201100059
  • Ferraz CAA, De Oliveira Júnior RG, Picot L, Da Silva Almeida JRG, Nunes XP. 2019. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review. Fitoterapia. 137:104196. doi:10.1016/j.fitote.2019.104196
  • Hao X, Li J, Yao Z. 2016. Changes in PAHs levels in edible oils during deep-frying process. Food Control. 66:233–240. doi:10.1016/j.foodcont.2016.02.012
  • Herraiz T. 2000a. Analysis of the bioactive alkaloids tetrahydro-β-carboline and β-carboline in food. J Chromatogr A. 881:483–499. doi:10.1016/S0021-9673(99)01313-8
  • Herraiz T. 2000b. Tetrahydro-beta-carboline-3-carboxylic acid compounds in fish and meat: possible precursors of co-mutagenic beta-carbolines norharman and harman in cooked foods. Food Addit Contam. 17(10):859–866. doi:10.1080/026520300420439.
  • Herraiz T. 2002. Identification and occurrence of the bioactive β-carbolines norharman and harman in coffee brews. Food Addit Contam B. 19:748–754. doi:10.1080/02652030210145892
  • Herraiz T. 2004. Relative exposure to β-carbolines norharman and harman from foods and tobacco smoke. Food Addit Contam A. 21:1041–1050. doi:10.1080/02652030400019844
  • Hu H, Liu H, Shi A, Liu L, Fauconnier ML, Wang Q. 2019. The effect of microwave pretreatment on micronutrient contents, oxidative stability and flavor quality of peanut oil. Molecules. 24:62. doi:10.3390/molecules24010062
  • JDP R-A, Samaniego-Sánchez C, Castañeda-Saucedo MC, Villalón-Mir M, De La Serrana HL. 2015. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques. Food Chem. 188:430–438. doi:10.1016/j.foodchem.2015.04.124
  • Jędrkiewicz R, Głowacz A, Gromadzka J, Namieśnik J. 2016. Determination of 3-MCPD and 2-MCPD esters in edible oils, fish oils and lipid fractions of margarines available on Polish market. Food Control. 59:487–492. doi:10.1016/j.foodcont.2015.05.039
  • Ji J, Liu Y, Shi L, Wang N, Wang X. 2019. Effect of roasting treatment on the chemical composition of sesame oil. LWT Food Sci Technol. 101:191–200. doi:10.1016/j.lwt.2018.11.008
  • Kamikata K, Vicente E, Arisseto-Bragotto AP, Miguel AMRD, Milani RF, Tfouni SAV. 2019. Occurrence of 3-MCPD, 2-MCPD and glycidyl esters in extra virgin olive oils, olive oils and oil blends and correlation with identity and quality parameters. Food Control. 95:135–141. doi:10.1016/j.foodcont.2018.07.051
  • Kraljić K, Stjepanović T, Obranović M, Pospišil M, Balbino S, Škevin D. 2018. Influence of conditioning temperature on the quality, nutritional properties and volatile profile of virgin rapeseed oil. Food Technol Biotech. 56:562–572. doi:10.17113/ftb.56.04.18.5738
  • Liska DJ, Cook CM, Wang DD, Gaine PC, Baer DJ. 2016. Trans fatty acids and cholesterol levels: an evidence map of the available science. Food Chem Toxicol. 98:269–281. doi:10.1016/j.fct.2016.07.002
  • Lu F, Kuhnle GK, Cheng Q. 2017a. Vegetable oil as fat replacer inhibits formation of heterocyclic amines and polycyclic aromatic hydrocarbons in reduced fat pork patties. Food Control. 81:113–125. doi:10.1016/j.foodcont.2017.05.043
  • Lu F, Kuhnle GK, Cheng Q. 2017b. Heterocyclic amines and polycyclic aromatic hydrocarbons in commercial ready-to-eat meat products on UK market. Food Control. 73:306–315. doi:10.1016/j.foodcont.2016.08.021
  • Oz F, Kotan G. 2016. Effects of different cooking methods and fat levels on the formation of heterocyclic aromatic amines in various fishes. Food Control. 67:216–224. doi:10.1016/j.foodcont.2016.03.013
  • Pfau W, Skog K. 2004. Exposure to β-carbolines norharman and harman. J Chromatogr B. 802:115–126. doi:10.1016/j.jchromb.2003.10.044
  • Sahoo CR, Paidesetty SK, Padhy RN. 2019. Norharmane as a potential chemical entity for development of anticancer drugs. Eur J Med Chem. 162:752–764. doi:10.1016/j.ejmech.2018.11.024
  • Sanz-Alaejos M, Afonso AM. 2011. Factors that affect the content of heterocyclic aromatic amines in foods. Compr Rev Food Sci F. 10:52–108. doi:10.1111/j.1541-4337.2010.00141.x
  • Schwartzbord JR, Brown DL. 2015. Aflatoxin contamination in Haitian peanut products and maize and the safety of oil processed from contaminated peanuts. Food Control. 56:114–118. doi:10.1016/j.foodcont.2015.03.014
  • Shi L, Zhang D, Liu Y. 2016. Incidence and survey of polycyclic aromatic hydrocarbons in edible vegetable oils in China. Food Control. 62:165–170. doi:10.1016/j.foodcont.2015.10.037
  • Skog K, Solyakov A, Jägerstad M. 2000. Effects of heating conditions and additives on the formation of heterocyclic amines with reference to amino-carbolines in a meat juice model system. Food Chem. 68:299–308. doi:10.1016/S0308-8146(99)00195-8
  • Wei C, Zhou Q, Han B, Chen Z, Liu W. 2019. Changes occurring in the volatile constituents of flaxseed oils (FSOs) prepared with diverse roasting conditions. Eur J Lipid Sci Tech. 121:1800068. doi:10.1002/ejlt.201800068
  • Wojtowicz E, Zawirska-Wojtasiak R, Przygoński K, Mildner-Szkudlarz S. 2015. Bioactive β-carbolines norharman and harman in traditional and novel raw materials for chicory coffee. Food Chem. 175:280–283. doi:10.1016/j.foodchem.2014.11.143
  • Xu L, Lao F, Xu Z, Wang X, Chen F, Liao X, Chen A, Yang S. 2019. Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomic approach to discriminate coffee brewed by different methods. Food Chem. 286:106–112. doi:10.1016/j.foodchem.2019.01.154
  • Yan Y, Zhang S, Tao G, You F, Chen J, Zeng M. 2017. Acetonitrile extraction coupled with UHPLC–MS/MS for the accurate quantification of 17 heterocyclic aromatic amines in meat products. J Chromatogr B. 1068-1069:173–179. doi:10.1016/j.jchromb.2017.10.015
  • Zhao WY, Zhou WY, Chen JJ, Yao GD, Lin B, Wang XB, Huang XX, Song SJ. 2019a. Enantiomeric β-carboline dimers from Picrasma quassioides and their anti-hepatoma potential. Phytochemistry. 159:39–45. doi:10.1016/j.phytochem.2018.12.002
  • Zhao Z, Sun Y, Wang L, Chen X, Sun Y, Lin L, Tang Y, Li F, Chen D. 2019b. Organic base-promoted efficient dehydrogenative/decarboxylative aromatization of tetrahydro-β-carbolines into β-carbolines under air. Tetrahedron Lett. 60:800–804. doi:10.1016/j.tetlet.2019.02.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.