542
Views
8
CrossRef citations to date
0
Altmetric
Articles

Occurrence of environmental contaminants (pesticides, herbicides, PAHs) in Australian/Queensland Apis mellifera honey

ORCID Icon, ORCID Icon, , , , , , , , & show all
Pages 193-205 | Received 23 Dec 2020, Accepted 05 Apr 2021, Published online: 05 Jun 2021

References

  • Al-Alam J, Fajloun Z, Chbani A, Millet M. 2018. Determination of 16 PAHs and 22 PCBs in honey samples originated from different region of Lebanon and used as environmental biomonitors sentinel. J Environ Sci Health Part A. 1–7. doi:10.1080/10934529.2018.1500782.
  • Albero B, Sánchez-Brunete C, Tadeo JL. 2003. Determination of polycyclic aromatic hydrocarbons in honey by matrix solid-phase dispersion and gas chromatography/mass spectrometry. J AOAC Int. 86:576–582. doi:10.1093/jaoac/86.3.576.
  • Alder L, Greulich K, Kempe G, Vieth B. 2006. Residue analysis of 500 high priority pesticides: better by GC-MS or LC-MS/MS? Mass Spectrom Rev. 25:838–865. doi:10.1002/mas.20091.
  • Arthidoro de Castro MB, Martinez LC, Cossolin JFS, Serra RS, Serrao JE. 2020. Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambda-cyhalothrin. Chemosphere. 248:126075. doi:10.1016/j.chemosphere.2020.126075.
  • ATSDR. 1995. Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta (GA): AfTSaDR U.S. Department of Health and Human Services: Public Health Services. [accessed 2017 Apr 12]. https://www.atsdr.cdc.gov/toxprofiles/tp69.pdf.
  • Balayiannis G, Balayiannis P. 2008. Bee honey as an environmental bioindicator of pesticides’ occurrence in six agricultural areas of Greece. Arch Environ Contam Toxicol. 55:462–470. doi:10.1007/s00244-007-9126-x.
  • Barmaz S, Potts SG, Vighi M. 2010. A novel method for assessing risks to pollinators from plant protection products using honeybees as a model species. Ecotoxicology. 19:1347–1359. doi:10.1007/s10646-010-0521-0.
  • Barnes A 2015. Backyard beekeeping Australia’s latest urban craze. Domain News. [accessed 2017 Apr 13]. https://www.domain.com.au/news/backyard-beekeeping-australias-latest-urban-craze-20150823-gj5uu7/
  • Batelková P, Borkovcová I, Čelechovská O, Vorlová L, Bartáková K. 2012. Polycyclic aromatic hydrocarbons and risk elements in honey from the South Moravian region (Czech Republic). Acta Vet Brno. 81:169–174. doi:10.2754/avb201281020169.
  • Berg CJ, King HP, Delenstarr G, Kumar R, Rubio F, Glaze T. 2018. Glyphosate residue concentrations in honey attributed through geospatial analysis to proximity of large-scale agriculture and transfer off-site by bees. PLoS One. 13:e0198876. doi:10.1371/journal.pone.0198876.
  • Blasco C, Lino CM, Picó Y, Pena A, Font G, Silveira MIN. 2004. Determination of organochlorine pesticide residues in honey from the central zone of Portugal and the Valencian community of Spain. J Chromatogr A. 1049:155–160. doi:10.1016/j.chroma.2004.07.049.
  • Bogdanov S. 2005. Contaminants of bee products. Apidologie. 37:1–18. doi:10.1051/apido:2005043.
  • Carpinelli De Jesus M, Hungerford NL, Carter SJ, Anuj SR, Blanchfield JT, De Voss JJ, Fletcher MT. 2019. Pyrrolizidine alkaloids of blue heliotrope (Heliotropium amplexicaule) and their presence in Australian honey. J Agric Food Chem. 67:7995–8006. doi:10.1021/acs.jafc.9b02136.
  • Chiesa LM, Panseri S, Nobile M, Ceriani F, Arioli F. 2018. Distribution of POPs, pesticides and antibiotic residues in organic honeys from different production areas. Food Addit Contam Part A. 35:1340–1355. doi:10.1080/19440049.2018.1451660.
  • Ciemniak A, Witczak A, Mocek K. 2013. Assessment of honey contamination with polycyclic aromatic hydrocarbons. J Environ Sci Health Part B. 48:993–998. doi:10.1080/03601234.2013.816609.
  • Codex Alimentarius Commission. 2001. Standard for Honey CXS 12-1981, Rev. 1 (1987), Rev. 2 (2001), Amended (2019), Codex Standard, Vol. 12. 1981, pp. 1–7. Rome. [accessed 2020 Aug 24]. http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/
  • Colin T, Plath JA, Klein S, Vine P, Devaud JM, Lihoreau M, Meikle WG, Barron AB. 2020. The miticide thymol in combination with trace levels of the neonicotinoid imidacloprid reduces visual learning performance in honey bees (Apis mellifera). Apidologie. 51:499–509. doi:10.1007/s13592-020-00737-6.
  • Corredera L, Bayarri S, Perez-Arquillue C, Lazaro R, Molino F, Herrera A. 2011. Multiresidue determination of carcinogenic polycyclic aromatic hydrocarbons in honey by solid-phase extraction and high-performance liquid chromatography. J Food Prot. 74:1692–1699. doi:10.4315/0362-028X.JFP-11-140.
  • Corredera L, Bayarri S, Perez-Arquillue C, Lazaro R, Molino F, Herrera A. 2014. Evaluation of heavy metals and polycyclic aromatic hydrocarbons in honeys from different origins. J Food Prot. 77:504–509. doi:10.4315/0362-028X.JFP-13-223.
  • De Roos AJ, Blair A, Rusiecki JA, Hoppin JA, Svec M, Dosemeci M, Sandler DP, Alavanja MC. 2004. Cancer incidence among glyphosate-exposed pesticide applicators in the agricultural health study. Environ Health Perspect. 113:49–54. doi:10.1289/ehp.7340.
  • de Souza APF, Rodrigues NR, Reyes FGR. 2020. Glyphosate and aminomethylphosphonic acid (AMPA) residues in Brazilian honey. Food Addit Contam Part B Surveill. 1–8. doi:10.1080/19393210.2020.1855676.
  • Dobrinas S, Birghila S, Coatu V. 2008. Assessment of polycyclic aromatic hydrocarbons in honey and propolis produced from various flowering trees and plants in Romania. J Food Compos Anal. 21:71–77. doi:10.1016/j.jfca.2007.07.003.
  • Dolezal AG, Carrillo-Tripp J, Miller WA, Bonning BC, Toth AL. 2016. Pollen contaminatedwith field-relevant levels of cyhalothrin affects honey bee survival, nutritional physiology, and pollen consumption behavior. J Econ Entomol. 109:41–48. doi:10.1093/jee/tov301.
  • Eskenazi B, Bradman A, Castorina R. 1999. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ Health Perspect. 107:409–419. doi:10.1289/ehp.99107s3409.
  • European Commision. 2011. Commission Regulation (EU) No. 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. OJ L215:4-8.
  • Food Standards Australia and New Zealand. 2015. FSANZ Standard 2.8.2 Honey, Food Standards (Proposal P1025 – Code Revision) variation. Canberra. [accessed 2020 Aug 24]. https://www.legislation.gov.au/Details/F2015L00407
  • Frecker J 2020. Plan Bee: everything you need to know about urban beekeeping. [accessed 2020 Jul 10]. https://www.urban.com.au/news/plan-bee-everything-you-need-to-know-about-urban-beekeeping
  • FSANZ. 2004. Survey of polycyclic aromatic hydrocarbons (PAH) in Australian foods. [accessed 2017 Apr 22]. http://www.foodstandards.gov.au/science/surveillance/documents/PAH%20Survey%20for%20website.pdf
  • FSANZ. 2016. Australia New Zealand Food Standards Code - Schedule 20 - Maximum residue limits Variation Instrument No. APVMA 9.[accessed 2017 April 26]. https://www.legislation.gov.au/Series/F2015L00468 
  • Gawel M, Kiljanek T, Niewiadowska A, Semeniuk S, Goliszek M, Burek O, Posyniak A. 2019. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem. 282:36–47. doi:10.1016/j.foodchem.2019.01.003.
  • Hungerford NL, Carter SJ, Anuj SR, Tan BLL, Hnatko D, Martin CL, Sharma E, Yin M, Nguyen TTP, Melksham KJ, et al. 2019. Analysis of pyrrolizidine alkaloids in Queensland honey: using low temperature chromatography to resolve stereoisomers and identify botanical sources by UHPLC-MS/MS. Toxins (Basel). 11:726. doi:10.3390/toxins11120726.
  • IARC. 2010. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Lyon, France: WHOIAfRo Cancer. [accessed 2019 Feb 28]. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono92.pdf.
  • IPCS. 1990. Environmental health criteria 99: cyhalothrin. International Programme on Chemical Safety: WHO. [accessed 2019 May 03]. http://www.inchem.org/documents/ehc/ehc/ehc99.htm
  • Iwegbue CMA, Tesi GO, Obi G, Obi-Iyeke GE, Igbuku UA, Martincigh BS. 2016. Concentrations, health risks and sources of polycyclic aromatic hydrocarbons in Nigerian honey. ToxEHS. 8:28–42. doi:10.1007/s13530-016-0259-z.
  • Jones KC, Grimmer G, Jacob J, Johnston AE. 1989. Changes in the polynuclear aromatic hydrocarbon content of wheat grain and pasture grassland over the last century from one site in the U.K. Sci Total Environ. 78:117–130. doi:10.1016/0048-9697(89)90026-0.
  • Jovetic MS, Redzepovic AS, Nedic NM, Vojt D, Durdic SZ, Brceski ID, Milojkovic-Opsenica DM. 2018. Urban honey - the aspects of its safety. Arh Hig Rada Toksikol. 69:264–274. doi:10.2478/aiht-2018-69-3126.
  • Klatt BK, Rundlöf M, Smith HG. 2016. Maintaining the restriction on neonicotinoids in the European Union – benefits and risks to bees and pollination services. Front Ecol Evol. 4. doi:10.3389/fevo.2016.00004.
  • Koltsakidou A, Zacharis CK, Fytianos K. 2015. A validated liquid chromatographic method for the determination of polycyclic aromatic hydrocarbons in honey after homogeneous liquid-liquid extraction using hydrophilic acetonitrile and sodium chloride as mass separating agent. J Chromatogr A. 1377:46–54. doi:10.1016/j.chroma.2014.12.039.
  • Lambert O, Piroux M, Puyo S, Thorin C, L’Hostis M, Wiest L, Bulete A, Delbac F, Pouliquen H. 2013. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of Western France. PLoS One. 8:e67007. doi:10.1371/journal.pone.0067007.
  • Lambert O, Piroux M, Puyo S, Thorin C, Larhantec M, Delbac F, Pouliquen H. 2012a. Bees, honey and pollen as sentinels for lead environmental contamination. Environ Pollut. 170:254–259. doi:10.1016/j.envpol.2012.07.012.
  • Lambert O, Veyrand B, Durand S, Marchand P, Le Bizec B, Piroux M, Puyo S, Thorin C, Delbac F, Pouliquen H. 2012b. Polycyclic aromatic hydrocarbons: bees, honey and pollen as sentinels for environmental chemical contaminants. Chemosphere. 86:98–104. doi:10.1016/j.chemosphere.2011.09.025.
  • Mitchell EAD, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A. 2017. A worldwide survey of neonicotinoids in honey. Science. 358:109–111. doi:10.1126/science.aan3684.
  • Moret S, Purcaro G, Conte LS. 2010. Polycyclic aromatic hydrocarbons (PAHs) levels in propolis and propolis-based dietary supplements from the Italian market. Food Chem. 122:333–338. doi:10.1016/j.foodchem.2010.02.041.
  • Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, Vanengelsdorp D, Pettis JS. 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One. 5:e9754. doi:10.1371/journal.pone.0009754.
  • NATA. 2018a. NATA general accredication guidance - estimating and reporting measurement uncertainty of chemical test results. [accessed 2019 May 22]. https://www.nata.com.au/phocadownload/gen-accreditation-guidance/Estimating-and-reporting-measurement-uncertainty-of-chemical-test-results.pdf
  • NATA. 2018b. NATA general accredication guidance - validation and verification of quantitative and qualitative test methods. [accessed 2019 May 22]. https://www.nata.com.au/phocadownload/gen-accreditation-guidance/Validation-and-Verification-of-Quantitative-and-Qualitative-Test-Methods.pdf
  • National Residue Survey. 2017. Honey residue testing annual datasets 2016-17. Australian Government: Department of Agriculture and Water Resources. [accessed 2020 Feb 5]. https://www.agriculture.gov.au/sites/default/files/sitecollectiondocuments/agriculture-food/nrs/honey-residue-testing-datasets-2016-17.docx
  • National Residue Survey. 2018. Honey residue testing annual datasets 2017-18. Australian Government: Department of Agriculture and Water Resources. [accessed 2019 May 14]. http://www.agriculture.gov.au/SiteCollectionDocuments/agriculture-food/nrs/honey-residue-testing-datasets-2017-18.docx
  • National Residue Survey. 2019. Honey residue testing annual datasets 2018-19. Australian Government: Department of Agriculture and Water Resources. [accessed 2020 Feb 5]. https://www.agriculture.gov.au/sites/default/files/documents/honey-residue-testing-datasets-2018-19_final.docx
  • Panseri S, Catalano A, Giorgi A, Arioli F, Procopio A, Britti D, Chiesa LM. 2014. Occurrence of pesticide residues in Italian honey from different areas in relation to its potential contamination sources. Food Control. 38:150–156. doi:10.1016/j.foodcont.2013.10.024.
  • Paradis D, Berail G, Bonmatin JM, Belzunces LP. 2014. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal Bioanal Chem. 406:621–633. doi:10.1007/s00216-013-7483-z.
  • Perugini M, Di Serafino G, Giacomelli A, Medrzycki P, Sabatini AG, Persano Oddo L, Marinelli E, Amorena M. 2009. Monitoring of polycyclic aromatic hydrocarbons in bees (Apis mellifera) and honey in urban areas and wildlife reserves. J Agric Food Chem. 57:7440–7444. doi:10.1021/jf9011054.
  • Petrovic J, Kartalovic B, Ratajac R, Spiric D, Djurdjevic B, Polacek V, Pucarevic M. 2019. PAHs in different honeys from Serbia. Food Addit Contam Part B Surveill. 12:116–123. doi:10.1080/19393210.2019.1569727.
  • Porrini C, Gloria Sabatini AG, Girotti S, Ghini S, Medrzycki P, Grillenzoni F, Bortolotti L, Gattavecchia E, Celli G. 2003a. Honey bees and bee products as monitors of the environmental contamination. Apiacta. 38:63–70.
  • Porrini C, Sabatini AG, Girotti S, Fin F, Monaco L, Celli G, Bortolotti L, Ghini S. 2003b. The death of honey bees and environmental pollution by pesticides: the honey bees as biological indicators. Bull Insectol. 56:147–152.
  • Queensland Health Forensic and Scientific Services. 2018. In-house method QIS 34973: Polycyclic Aromatic Hydrocarbons (PAH) in Honey.
  • Queensland Health Forensic and Scientific Services. 2019. In-house method QIS 30837: Analysis of Herbicides, Fungicides, Organochlorine and Organophosphorus Pesticides in Molasses/Honey by GC-MSMS and LC-MSMS.
  • Rodriguez Garcia JC, Iglesias Rodriguez R, Pena Crecente RM, Barciela Garcia J, Garcia Martin S, Herrero Latorre C. 2006. Preliminary chemometric study on the use of honey as an environmental marker in Galicia (Northwestern Spain). J Agric Food Chem. 54:7206–7212. doi:10.1021/jf060823t.
  • Shendy AH, Al-Ghobashy MA, Mohammed MN, Gad Alla SA, Lotfy HM. 2016. Simultaneous determination of 200 pesticide residues in honey using gas chromatography-tandem mass spectrometry in conjunction with streamlined quantification approach. J Chromatogr A. 1427:142–160. doi:10.1016/j.chroma.2015.11.068.
  • Shimshoni JA, Sperling R, Massarwa M, Chen Y, Bommuraj V, Borisover M, Barel S. 2019. Pesticide distribution and depletion kinetic determination in honey and beeswax: model for pesticide occurrence and distribution in beehive products. PLoS One. 14:e0212631. doi:10.1371/journal.pone.0212631.
  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, et al.. 2015. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int. 22:5–34. doi:10.1007/s11356-014-3470-y.
  • Tananaki C, Thrasyvoulou A, Karazafiris E, Zotou A. 2006. Contamination of honey by chemicals applied to protect honeybee combs from wax-moth (Galleria mellonela L.). Food Addit Contam. 23:159–163. doi:10.1080/02652030500350248.
  • Thompson TS, Van den Heever JP, Limanowka RE. 2019. Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 36:434–446. doi:10.1080/19440049.2019.1577993.
  • Tian H, Bai X, Xu J. 2017. Simultaneous determination of simazine, cyanazine, and atrazine in honey samples by dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. J Sep Sci. 40:3882–3888. doi:10.1002/jssc.201700498.
  • Tian H, Fu H, Xu C, Xu C. 2019. Simultaneous determination of three herbicides in honey samples using an aqueous biphasic system coupled with HPLC-MS/MS. Chromatographia. 82:1571–1577. doi:10.1007/s10337-019-03781-2.
  • Wang J, Kliks MM, Jun S, Li QX. 2010a. Residues of organochlorine pesticides in honeys from different geographic regions. Food Res Int. 43:2329–2334. doi:10.1016/j.foodres.2010.08.006.
  • Wang K, Jiang J, Lv X, Zang S, Tian S, Zhang H, Yu A, Zhang Z, Yu Y. 2018. Application of solvent floatation to separation and determination of triazine herbicides in honey by high-performance liquid chromatography. Anal Bioanal Chem. 410:2183–2192. doi:10.1007/s00216-018-0881-5.
  • Wang Y, You J, Ren R, Xiao Y, Gao S, Zhang H, Yu A. 2010b. Determination of triazines in honey by dispersive liquid-liquid microextraction high-performance liquid chromatography. J Chromatogr A. 1217:4241–4246. doi:10.1016/j.chroma.2010.03.031.
  • Wang Y, Zhu YC, Li W. 2020. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotoxicol Environ Saf. 190:110100. doi:10.1016/j.ecoenv.2019.110100.
  • Wiest L, Bulete A, Giroud B, Fratta C, Amic S, Lambert O, Pouliquen H, Arnaudguilhem C. 2011. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. J Chromatogr A. 1218:5743–5756. doi:10.1016/j.chroma.2011.06.079.
  • Wu L, Song Y, Hu M, Yu C, Zhang H, Yu A, Ma Q, Wang Z. 2015. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey. J Sep Sci. 38:2953–2959. doi:10.1002/jssc.201500039.
  • Yang Y, Ma S, Yan Z, Liu F, Diao Q, Dai P. 2019. Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environ Pollut (Oxford, U K). 249:860–867. doi:10.1016/j.envpol.2019.03.077.
  • Zhou T, Hou J, Yuan D, Li H, Zhang P, Li Y, Ding H, Chen Y, Ding L. 2016. Determination of triazine herbicides from honey samples based on hydrophilic molecularly imprinted resins followed by high performance liquid chromatography-tandem mass spectrometry. RSC Adv. 6:98663–98673. doi:10.1039/C6RA20698K.
  • Zhou X, Taylor MP, Salouros H, Prasad S. 2018. Authenticity and geographic origin of global honeys determined using carbon isotope ratios and trace elements. Sci Rep. 8:14639. doi:10.1038/s41598-018-32764-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.