199
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tetracyclines in pasteurized milk commercialized in São Paulo, Brazil: occurrence and dietary risk assessment based on single and combined exposure with polyether ionophores

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 254-265 | Received 20 Jan 2022, Accepted 13 Jun 2022, Published online: 21 Jul 2022

References

  • [ANVISA] Agência Nacional de Vigilância Sanitária. 2019a. Instrução Normativa N° 51, de 19 de Dezembro de 2019. Estabelece a lista de limites máximos de resíduos (LMR), ingestão diária aceitável (IDA) e dose de referência aguda (DRfA) para insumos farmacêuticos ativos (IFA) de medicamentos veterinários em alimentos de origem animal. DOU. Publicado em: 26/12/2019 Edição: 249 Seção: 1 Página: 98. [accessed 2021 July 21]. https://www.in.gov.br/web/dou/-/instrucao-normativa-n-51-de-19-de-dezembro-de-2019-235414514.
  • [ANVISA] Agência Nacional de Vigilância Sanitária. 2019b. Resolução-RDC ANVISA N° 328, de 19 de dezembro de 2019. Dispõe sobre a avaliação do risco à saúde humana de medicamentos veterinários e os métodos de análise para fins de avaliação da conformidade. DOU. Publicado em: 26/12/2019 Edição: 249 Seção: 1 Página: 82 [accessed 2019 July 26]. https://www.in.gov.br/web/dou/-/resolucao-rdc-n-328-de-19-de-dezembro-de-2019-235414702.
  • [ANVISA] Agência Nacional de Vigilância Sanitária. 2021. FAQ-Perguntas & Respostas. Limites máximos de resíduos (LMR) de medicamentos veterinários em alimentos de origem animal. [accessed 2021 July 26]. https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2021/faq-residuos-de-medicamentos-veterinarios-em-alimentos-de-origem-animal.
  • Arisseto-Bragotto AP, Feltes MMC, Block JM. 2017. Food quality and safety progress in the Brazilian food and beverage industry: chemical hazards. Food Qual Saf. 1(2):117–129. doi:10.1093/fqsafe/fyx009.
  • Bacanli M, Başaran N. 2019. Importance of antibiotic residues in animal food. Food Chem Toxicol. 125:462–466. doi:10.1016/j.fct.2019.01.033.
  • Bando E, Oliveira RC, Ferreira GM, Machinski M Jr. 2009. Occurrence of antimicrobial residues in pasteurized milk commercialized in the State of Paraná, Brazil. J Food Prot. 72(4):911–914. doi:10.4315/0362-028X-72.4.911.
  • Bedale WA. 2019. Veterinary drug residues in foods of animal origin. In: Smulders F, Rietjens I, Rose M, editors. Chemical hazards in foods of animal origin, ECVPH food safety assurance. Vol. 7. p. 51–79. doi:10.3920/978-90-8686-877-3_02
  • Blain M, Garrard A, Poppenga R, Chen B, Valento M, Gittinger MH. 2017. Survival after severe rhabdomyolysis following monensin ingestion. J Med Toxicol. 13(3):259–262. doi:10.1007/s13181-017-0616-6.
  • Bloch KV, Szklo M, Kuschnir MC, Abreu GDA, Barufaldi LA, Klein CH, de Vasconcelos MT, da Veiga GV, Figueiredo VC, Dias A, et al. 2015. The study of cardiovascular risk in adolescents – ERICA: rationale, design and sample characteristics of a national survey examining cardiovascular risk factor profile in Brazilian adolescents. BMC Public Health. 15(1):94. Erratum in: BMC Public Health. 2015,15:850. doi:10.1186/s12889-015-1442-x.
  • Bortolini GA, Vitolo MR, Gubert MB, Santos LMP. 2013. Consumo precoce de leite de vaca entre crianças brasileiras: resultados de uma pesquisa nacional. J Pediatr (Rio J). 89(6):608–613. doi:10.1016/j.jped.2013.04.003.
  • Botsoglou NA, Fletouris DJ. 2001. Drug residues in foods: pharmacology, food safety and analysis. New York: Marcel Dekker, Inc; p. 1194.
  • Corrêa FT, Campos SAS, Pinto SM. 2015. Presence of antibiotics, conservatives and restoratives in pasteurized and UHT milk. Demetra. 10(2):289–298. doi:10.12957/demetra.2015.14843.
  • Davis JL, and Gookin JL. 2017. Antiprotozoan drugs. In: Riviere J, Papich M, editors. Veterinary pharmacology and therapeutics. 10th ed. Hoboken (NJ): John Wiley & Sons; p. 1128–1165.
  • [EC] European Commission. 2002. Commission Regulation (EU) No. 657/2002 of 12 August 2002 on implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Commun L. 221:8–36.
  • [EMA] The European Agency for the Evaluation of Medicinal Products. 1995. Committee for veterinary medicinal products. Oxytetracycline, Tetracycline, Chlortetracycline, Summary Report 3. EMEA/MRL/023/95.
  • [FAO] Food and Agriculture Organization of the United Nations. 2021. Food outlook – biannual report on global food markets. Rome; [accessed 2022 Jan 11]. https://www.fao.org/3/cb7491en/cb7491en.pdf.
  • [FAO/WHO] Food and Agricultural Organization of the United Nations/World Health Organization. 1999. Evaluation of certain veterinary drug residues in food (Fiftieth report of the Joint FAO/WHO Expert Committee on Food Additives). Food and Agricultural Organization/World Health Organization. WHO Technical Report Series 888:50–53 [accessed 2021 July 21]. http://apps.who.int/iris/bitstream/handle/10665/42182/WHO_TRS_888.pdf;jsessionid=87841F51073839044936328F1B4C14C9?sequence=1.
  • [FAO/WHO] Food and Agriculture Organization of the United Nations/World Health Organization. 2012. Joint FAO/WHO expert meeting on dietary exposure assessment methodologies for residues of veterinary drugs: final report including report of stakeholder meeting. Rome; [accessed 2021 July 27]. http://www.fao.org/fileadmin/user_upload/agns/pdf/jecfa/Dietary_Exposure_Assessment_Methodologies_for_Residues_of_Veterinary_Drugs.pdf.
  • [FAO/WHO] Food and Agricultural Organization of the United Nations/World Health Organization. 2020. Dietary exposure assessment for chemicals in food. In: Environmental health criteria 240 - principles and methods for the risk assessment of chemicals in food. 2nd ed. Chapter 6. Geneva: World Health Organization; 175p.
  • Fernandes SAA, Magnavita APA, Ferrao SPB, Gualberto AS, Faleiro AJF, Matarazzo SV, Matarazzo SV. 2014. Daily ingestion of tetracycline residue present in pasteurized milk: a public health problem. Environ Sci Pollut Res Int. 21(5):3427–3434. doi:10.1007/s11356-013-2286-5.
  • Freitas SKB, Paim APS, de Souza E Silva PT. 2014. Development of a LC-IT-TOF MS procedure to quantify veterinary drug residues in milk employing a QuEchers approach. Food Anal Methods. 7(1):39–46. doi:10.1007/s12161-013-9595-7.
  • Gajda A, Nowacka-Kozak E, Gbylik–sikorska M, Posyniak A. 2018. Tetracycline antibiotics transfer from contaminated milk to dairy products and the effect of the skimming step and pasteurisation process on residue concentrations. Food Addit Contam A. 35(1):66–76. doi:10.1080/19440049.2017.1397773.
  • Grossman TH. 2016. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 6(4):a025387. doi:10.1101/cshperspect.a025387.
  • [IBGE] Instituto Brasileiro de Geografia e Estatística. 2011. Pesquisa de orçamentos familiares 2008-2009: análise do consumo alimentar pessoal no Brasil/IBGE, Coordenação de Trabalho e Rendimento. Rio de Janeiro: IBGE; p. 150; [accessed 2021 July 26]
  • Lobato CLDS, de Los Santos JRG. 2019. Resíduos de antibióticos no leite: causas e impactos para a indústria e saúde pública. Sci Anim Health. 7(3):232–250. doi:10.15210/sah.v7i3.17501.
  • Mancini FR, Frenoy P, Fiolet T, Fagherazzi G, Crépet A. 2021. Identification of chemical mixtures to which women are exposed through the diet: Results from the French E3N cohort. Environ Int. 152:106467. doi:10.1016/j.envint.2021.106467.
  • [MAPA] Ministério da Agricultura, Pecuária e Abastecimento. 2020. Plano Nacional de Controle de Resíduos e Contaminantes PNCRC/Animal [accessed 2021 Aug 12]. https://www.gov.br/agricultura/pt-br/assuntos/inspecao/produtos-animal/plano-de-nacional-de-controle-de-residuos-e-contaminantes.
  • Morais CMQJ, Durães TS, Nóbrega AW, Jacob SC. 2010. Presença de resíduos de antibióticos em leite bovino pasteurizado. Food Sci Technol. 30(1):33–35. doi:10.1590/S0101-20612009005000002.
  • More SJ, Bampidis V, Benford D, Bennekou SH, Bragard C, Halldorsson TI, Hernandez-Jerez AF, Koutsoumanis K, Naegeli H, Schlatter JR, et al. 2019. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 17(3):5634, 77. doi:10.2903/j.efsa.2019.5634.
  • [NADIS] National Animal Disease Information Service. 2019. Cattle medicines. [accessed 2021 July 21]. https://www.nadis.org.uk/disease-a-z/cattle/cattle-medicines.
  • Novaes SF, Schreiner LL, Silva IP, Franco RM. 2017. Residues of veterinary drugs in milk in Brazil. Ciência Rural [online]. 47(8):e20170215; [accessed 2021 July 21]. doi:10.1590/0103-8478cr20170215.
  • Oliveira MVM, Lana RP, Jham GN, Pereira JC, Pérez JRO, Valadares Filho SC. 2005. Influência da monensina no consumo e na fermentação ruminal em bovinos recebendo dietas com teores baixo e alto de proteína. Rev Bras Zootec. 34(5):763–1774. doi:10.1590/S1516-35982005000500038.
  • Pereira PC. 2014. Milk nutritional composition and its role in human health. Nutrition. 30(6):619–627. doi:10.1016/j.nut.2013.10.011.
  • Pereira MU, Spisso BF, Jacob SC, Monteiro MA, Ferreira RG, Carlos BS, da Nobrega AW. 2016. Validation of a liquid chromatography-electrospray ionization tandem mass spectrometric method to determine six polyether ionophores in raw, UHT, pasteurized and powdered milk. Food Chem. 196:130–137. doi:10.1016/j.foodchem.2015.09.011.
  • Prado CK, Ferreira FD, Bando E, Machinski MJ. 2015. Oxytetracycline, tetracycline, chlortetracycline and doxycycline in pasteurised cow’s milk commercialised in Brazil. Food Addit Contamin B. 8(2):81–84. doi:10.1080/19393210.2014.968881.
  • Schlemper V, Sachet AP. 2017. Antibiotic residues in pasteurized and unpasteurized milk marketed in southwest of Paraná, Brazil. Cienc Rural [Online]. [accessed 2021 July 27], e20170307, 47:12. doi:10.1590/0103-8478cr20170307.
  • Shaikh JR, Patil MK. 2020. Drug residues in milk and milk products: sources, public health impact, prevention and control. Int J Livest Res. 10(6):24–36. doi:10.5455/ijlr.20200410024336.
  • Siljanoski A, Ciglarič R, Pezdir T, Lainšček PR, Dolenc J, Starič J, Šinigoj-Gačnik K. 2018. Detection of tetracycline and other antimicrobial residues in milk from cows with clinical mastitis treated by combination therapy. J Dairy Res. 85(3):321–326. doi:10.1017/S0022029918000389.
  • Silva FRN, Pereira AD, Baptista DP, Pereira MU, Spisso BF, Gigante ML, de Campos Braga PA, Reyes FGR, Arisseto-Bragotto AP. 2020. Monensin residues in the production of Minas Frescal cheese: stability, effects on fermentation, fate and physicochemical characteristics of the cheese. Food Res Int. 137:109440. doi:10.1016/j.foodres.2020.109440.
  • Silva FRN, Pereira MU, Spisso BF, Arisseto-Bragotto AP. 2021. Polyether ionophores residues in pasteurized milk marketed in the state of São Paulo, Brazil: occurrence and exposure assessment. Food Res Int. 141:110015. doi:10.1016/j.foodres.2020.110015.
  • [SINDAN] Sindicato Nacional da Indústria de Produtos para Saúde Animal. 2022. Compêndio de Produtos Veterinários. São Paulo; [accessed 2022 Jan 10]. https://sistemas.sindan.org.br/cpvs/pesquisar.aspx
  • Siqueira KB. 2019. O Mercado Consumidor de Leite e Derivados. Circular Técnica 120. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). Juiz de Fora; [accessed 2022 Jan 4]. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/199791/1/CT-120-MercadoConsumidorKennya.pdf
  • Spisso BF, de Araújo Júnior MAG, Monteiro MA, Lima AMB, Pereira MU, Luiz RA, da Nóbrega AW. 2009. A liquid chromatography–tandem mass spectrometry confirmatory assay for the simultaneous determination of several tetracyclines in milk considering keto–enol tautomerism and epimerization phenomena. Anal Chim Acta. 656(1–2):72–84. doi:10.1016/j.aca.2009.10.012.
  • Spisso BF, Monteiro MA, Pereira MU, Ferreira RG, da Costa RP, Cruz TÁ, da Nobrega AW. 2010. Pilot survey of commercial pasteurized milk consumed in the metropolitan area of Rio de Janeiro, Brazil, for tetracyclines residues, including the 4-epimers of oxytetracycline, tetracycline and chlortetracycline. Food Addit Contam B. 3(4):220–227. doi:10.1080/19393210.2010.531401.
  • Statista. 2021. Distribution of milk consumption in Brazil as of June 2017, by product. [accessed 2021 Aug 6]. https://www.statista.com/statistics/935623/brazil-milk-consumption-distribution-product/.
  • Ture M, Fentie T, Regassa B. 2019. Veterinary drug residue: the risk, public health significance and its management. Dairy Vet Sci J. 13(2):555856. doi:10.19080/JDVS.2019.13.555856.
  • [USDA] United States Department of Agriculture. 2021. Dairy and products annual – Brazil. Report Number: BR2021-0042; [accessed 2022 Jan 4]. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Dairy%20and%20Products%20Annual_Brasilia_Brazil_10-15-2021.
  • [WHO] World Health Organization. 2019. Critically Important Antimicrobials for Human Medicine. World Health Organization. 6th Revision. [accessed 2021 July 21]. https://www.who.int/publications/i/item/9789241515528.
  • Zanella GN, Mikcha JM, Bando E, Siqueira VL, Machinski M Jr. 2010. Occurrence and antibiotic resistance of coliform bacteria and antimicrobial residues in pasteurized cow’s milk from Brazil. J Food Prot. 73(9):1684–1687. doi:10.4315/0362-028X-73.9.1684.
  • Zhang X, Chen X, Xu Y, Yang J, Du L, Li K, Zhou Y. 2021. Milk consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses in humans. Nutr Metab. 18(1):7. doi:10.1186/s12986-020-00527-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.