254
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prospective life cycle assessment to support eco-design of solid oxide fuel cells

Pages 20-37 | Received 28 Nov 2023, Accepted 07 May 2024, Published online: 19 May 2024

References

  • Adrianto, L. R., M. K. van der Hulst, J. P. Tokaya, R. Arvidsson, C. F. Blanco, C. Caldeira, and M. Hauck, S. Sala, B. Steubing, M. Buyle, M. Kaddoura. 2021. “How Can LCA Include Prospective Elements to Assess Emerging Technologies and System Transitions? The 76th LCA Discussion Forum on Life Cycle Assessment, 19 November 2020.” The International Journal of Life Cycle Assessment 26 (8): 1541–1544. https://doi.org/10.1007/s11367-021-01934-w.
  • Affandi, N. S. M., and N. Osman. 2022. “Short Review on Global Trends in SOFC Scenario and Future Perspective.” Materials Today: Proceedings 66:3981–3984. https://doi.org/10.1016/j.matpr.2022.04.824.
  • Al-Khori, K., Y. Bicer, and M. Koç. 2021. “Comparative Techno-Economic Assessment of Integrated PV-SOFC and PV-Battery Hybrid System for Natural Gas Processing Plants.” Energy 222:119923. https://doi.org/10.1016/j.energy.2021.119923.
  • Andersson, M., S. B. Beale, M. Espinoza, Z. Wu, and W. Lehnert. 2016. “A Review of Cell-Scale Multiphase Flow Modeling, Including Water Management, in Polymer Electrolyte Fuel Cells.” Applied Energy 180:757–778. https://doi.org/10.1016/j.apenergy.2016.08.010.
  • Araujo, A. J., J. P. Grilo, F. J. Loureiro, L. F. Campos, C. A. Paskocimas, R. M. Nascimento, and D. A. Macedo. 2018. “Designing Experiments for the Preparation of Ni-GDC Cermets with Controlled Porosity As SOFC Anode Materials: Effects on the Electrical Properties.” Ceramics International 44 (18): 23088–23093. https://doi.org/10.1016/j.ceramint.2018.09.115.
  • Arvidsson, R., M. Svanström, B. A. Sandén, N. Thonemann, B. Steubing, and S. Cucurachi. 2023. “Terminology for Future-Oriented Life Cycle Assessment: Review and Recommendations.” The International Journal of Life Cycle Assessment 29 (4): 1–7. https://doi.org/10.1007/s11367-023-02265-8.
  • Arvidsson, R., A. M. Tillman, B. A. Sandén, M. Janssen, A. Nordelöf, D. Kushnir, and S. Molander. 2018. “Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA.” Journal of Industrial Ecology 22 (6): 1286–1294. https://doi.org/10.1111/jiec.12690.
  • Bian, R. 2020. “Post-Grant Patent Review in China: An Empirical Analysis.” Queen Mary Journal of Intellectual Property 10 (3): 339–375. https://doi.org/10.4337/qmjip.2020.03.04.
  • Bicer, Y., and F. Khalid. 2020. “Life Cycle Environmental Impact Comparison of Solid Oxide Fuel Cells Fueled by Natural Gas, Hydrogen, Ammonia and Methanol for Combined Heat and Power Generation.” International Journal of Hydrogen Energy 45 (5): 3670–3685. https://doi.org/10.1016/j.ijhydene.2018.11.122.
  • Calisir, D., S. Ekici, A. Midilli, and T. H. Karakoc. 2020. “A Review on Environmental Impacts from Aviation Sector in Terms of Life Cycle Assessment.” International Journal of Global Warming 22 (2): 211–234. https://doi.org/10.1504/IJGW.2020.110299.
  • Çalışır, D., S. Ekici, A. Midilli, and T. H. Karakoc. 2023. “Benchmarking Environmental Impacts of Power Groups Used in a Designed UAV: Hybrid Hydrogen Fuel Cell System versus Lithium-Polymer Battery Drive System.” Energy 262:125543. https://doi.org/10.1016/j.energy.2022.125543.
  • De Souza, T. A., C. J. Coronado, J. L. Silveira, and G. M. Pinto. 2021. “Economic Assessment of Hydrogen and Electricity Cogeneration Through Steam Reforming-SOFC System in the Brazilian Biodiesel Industry.” Journal of Cleaner Production 279:123814. https://doi.org/10.1016/j.jclepro.2020.123814.
  • Di Florio, G., E. G. Macchi, L. Mongibello, M. C. Baratto, R. Basosi, E. Busi, and M. Trini. 2021. “Comparative Life Cycle Assessment of Two Different SOFC-Based Cogeneration Systems with Thermal Energy Storage Integrated into a Single-Family House Nanogrid.” Applied Energy 285:116378. https://doi.org/10.1016/j.apenergy.2020.116378.
  • Duan, C., D. Hook, Y. Chen, J. Tong, and R. O’Hayre. 2017. “Zr and Y Co-Doped Perovskite As a Stable, High Performance Cathode for Solid Oxide Fuel Cells Operating Below 500 °C.” Energy & Environmental Science 10 (1): 176–182. https://doi.org/10.1039/C6EE01915C.
  • Dunn, M. K. 2011. “Timing of Patent Filing and Market Exclusivity.” Nature Reviews Drug Discovery 10 (7): 487. https://doi.org/10.1038/nrd3494.
  • Fernandes, M. D., V. Bistritzki, R. Z. Domingues, T. Matencio, M. Rapini, and R. D. Sinisterra. 2020. “Solid Oxide Fuel Cell Technology Paths: National Innovation System Contributions from Japan and the United States.” Renewable and Sustainable Energy Reviews 127:109879. https://doi.org/10.1016/j.rser.2020.109879.
  • Ferreira, V. J., D. Wolff, A. Hornés, A. Morata, M. Torrell, A. Tarancón, and C. Corchero. 2021. “5 kW SOFC Stack via 3D Printing Manufacturing: An Evaluation of Potential Environmental Benefits.” Applied Energy 291:116803. https://doi.org/10.1016/j.apenergy.2021.116803.
  • Gandiglio, M., F. De Sario, A. Lanzini, S. Bobba, M. Santarelli, and G. A. Blengini. 2019. “Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant.” Energies 12 (9): 1611. https://doi.org/10.3390/en12091611.
  • Goedkoop, M., R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. van Zelm. 2013. “ReCipe 2008: A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level. Report I: Characterisation - First Edition (Version 1.08) - VROMeRuimte En Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening En Milieubeheer (September 2017. http://www.lcia-recipe.net.
  • Gunaltili, E., S. Ekici, M. Z. Yilmazoglu, and T. H. Karakoc. 2022. “Gas Turbine and Fuel Cell Hybrid Systems.” In International Symposium on Electric Aircraft and Autonomous Systems, 1–7. Cham: Springer Nature Switzerland. July.
  • Hagen, A., X. Sun, B. R. Sudireddy, and Å. H. Persson. 2020. “Metal Supported SOFCs for Mobile Applications Using Hydrocarbon Fuels.” Journal of the Electrochemical Society 167 (10): 104510. https://doi.org/10.1149/1945-7111/ab9b9d.
  • Han, F., S. Yoon, N. Raghavan, B. Yang, and H. Park. 2023. “Technological Trajectory in Fuel Cell Technologies: A Patent-Based Main Path Analysis.” International Journal of Hydrogen Energy 50:1347–1361. https://doi.org/10.1016/j.ijhydene.2023.10.274.
  • Hauschild, M. Z., R. K. Rosenbaum, and S. I. Olsen. 2018. Life Cycle Assessment. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-56475-3Book.
  • Heidary, H., A. El-Kharouf, R. Steinberger-Wilckens, S. Bozorgmehri, M. Salimi, and M. Golmohammad. 2023. “Life Cycle Assessment of Solid Oxide Fuel Cell Vehicles in a Natural Gas Producing Country; Comparison with Proton Electrolyte Fuel Cell, Battery and Gasoline Vehicles.” Sustainable Energy Technologies and Assessments 59:103396. https://doi.org/10.1016/j.seta.2023.103396.
  • Hong, S., Y. Lim, H. Yang, J. Bae, and Y. B. Kim. 2017. “Single-Chamber Fabrication of High-Performance Low-Temperature Solid Oxide Fuel Cells with Grain-Controlled Functional Layers.” Journal of Materials Chemistry A 5 (5): 2029–2036. https://doi.org/10.1039/C6TA07237B.
  • Hu, M., G. Triulzi, and M. Sharifzadeh. 2020. “Technological Change in Fuel Cell Technologies.” In Design and Operation of Solid Oxide Fuel Cells, 3–41. The Systems Engineering Vision for Industrial Application, Woodhead Publishing Series in Energy. https://www.sciencedirect.com/science/article/abs/pii/B978012815253900001X.
  • ISO. 2006a. 14040:2006 Environmental Management - LCA - Principles and Framework. Switzerland. https://www.iso.org.
  • ISO. 2006b. 14044:2006 Environmental Management - LCA - Requirements and Guidelines Switzerland. https://www.iso.org.
  • Jiang, J., R. Zhou, H. Xu, H. Wang, P. Wu, Z. Wang, and J. Li. 2022. “Optimal Sizing, Operation Strategy and Case Study of a Grid-Connected Solid Oxide Fuel Cell Microgrid.” Applied Energy 307:118214. https://doi.org/10.1016/j.apenergy.2021.118214.
  • Ji, S., G. Y. Cho, W. Yu, P. C. Su, M. H. Lee, and S. W. Cha. 2015. “Plasma-Enhanced Atomic Layer Deposition of Nanoscale Yttria-Stabilized Zirconia Electrolyte for Solid Oxide Fuel Cells with Porous Substrate.” ACS Applied Materials and Interfaces 7 (5): 2998–3002. https://doi.org/10.1021/am508710s.
  • Joh, D. W., A. Hussain, T. H. Kim, J. W. Shin, J. E. Hong, S. Lee, and R. H. Song. 2023. “Evaluation of SOFC Durability Against Simultaneous Heat/Load Fluctuations.” ECS Transactions 111 (6): 453. https://doi.org/10.1149/11106.0453ecst.
  • Kanchiralla, F. M., S. Brynolf, E. Malmgren, J. Hansson, and M. Grahn. 2022. “Life-Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping.” Environmental Science & Technology 56 (17): 12517–12531. https://doi.org/10.1021/acs.est.2c03016.
  • Kumar, R., H. Sharma, C. Saran, T. S. Tripathy, K. S. Sangwan, and C. Herrmann. 2022. “A Comparative Study on the Life Cycle Assessment of a 3D Printed Product with PLA, ABS & PETG Materials.” Procedia CIRP 107:15–20. https://doi.org/10.1016/j.procir.2022.04.003.
  • Kuterbekov, K., A. Nikonov, K. Bekmyrza, V. Khrustov, N. Pavzderin, A. Kabyshev, and M. Kubenova. 2024. Co-Sintering of Gradient Anode–Electrolyte Structure for Microtubular SOFC. United Kingdom: Ceramics International.
  • Liao, C., Y. Tang, Y. Liu, Z. Sun, W. Li, and X. Ma. 2023. “Life Cycle Assessment of the Solid Oxide Fuel Cell Vehicles Using Ammonia Fuel.” Journal of Environmental Chemical Engineering 11 (5): 110872. https://doi.org/10.1016/j.jece.2023.110872.
  • Li, C. J., C. X. Li, Y. Z. Xing, M. Gao, and G. J. Yang. 2006. “Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma-Sprayed Cermet Supported Tubular SOFC.” Solid State Ionics 177 (19–25): 2065–2069. https://doi.org/10.1016/j.ssi.2006.03.004.
  • Liu, W., R. Tan, Z. Li, G. Cao, and F. Yu. 2021. “A Patent-Based Method for Monitoring the Development of Technological Innovations Based on Knowledge Diffusion.” Journal of Knowledge Management 25 (2): 380–401. https://doi.org/10.1108/JKM-09-2019-0502.
  • Longo, S., M. Cellura, F. Guarino, G. Brunaccini, and M. Ferraro. 2019. “Life Cycle Energy and Environmental Impacts of a Solid Oxide Fuel Cell Micro-CHP System for Residential Application.” Science of the Total Environment 685:59–73. https://doi.org/10.1016/j.scitotenv.2019.05.368.
  • Lyu, Q., T. Zhu, H. Qu, Z. Sun, K. Sun, Q. Zhong, and M. Han. 2021. “Lower Down Both Ohmic and Cathode Polarization Resistances of Solid Oxide Fuel Cell via Hydrothermal Modified Gadolinia Doped Ceria Barrier Layer.” Journal of the European Ceramic Society 41 (12): 5931–5938. https://doi.org/10.1016/j.jeurceramsoc.2021.05.020.
  • Malfuzi, A., A. S. Mehr, M. A. Rosen, M. Alharthi, and A. A. Kurilova. 2020. “Economic Viability of Bitcoin Mining Using a Renewable-Based SOFC Power System to Supply the Electrical Power Demand.” Energy 203:117843. https://doi.org/10.1016/j.energy.2020.117843.
  • Menzler, N. H., F. Tietz, S. Uhlenbruck, H. P. Buchkremer, and D. Stöver. 2010. “Materials and Manufacturing Technologies for Solid Oxide Fuel Cells.” Journal of Materials Science 45 (12): 3109–3135. https://doi.org/10.1007/s10853-010-4279-9.
  • Micoli, L., R. Russo, T. Coppola, and A. Pietra. 2023. “Performance Assessment of the Heat Recovery System of a 12 MW SOFC-Based Generator on Board a Cruise Ship Through a 0D Model.” Energies 16 (8): 3334. https://doi.org/10.3390/en16083334.
  • Minh, N. Q. 2004. “Solid Oxide Fuel Cell Technology—Features and Applications.” Solid State Ionics 174 (1–4): 271–277. https://doi.org/10.1016/j.ssi.2004.07.042.
  • Naeini, M., J. S. Cotton, and T. A. Adams II. 2022. “Dynamic Life Cycle Assessment of Solid Oxide Fuel Cell System Considering Long-Term Degradation Effects.” Energy Conversion and Management 255:115336. https://doi.org/10.1016/j.enconman.2022.115336.
  • Papurello, D., D. Canuto, and M. Santarelli. 2022. “CFD Model for Tubular SOFC Stack Fed Directly by Biomass.” International Journal of Hydrogen Energy 47 (10): 6860–6872. https://doi.org/10.1016/j.ijhydene.2021.12.015.
  • Peng, J., J. Huang, X. L. Wu, Y. W. Xu, H. Chen, and X. Li. 2021. “Solid Oxide Fuel Cell (SOFC) Performance Evaluation, Fault Diagnosis and Health Control: A Review.” Journal of Power Sources 505:230058. https://doi.org/10.1016/j.jpowsour.2021.230058.
  • Perčić, M., N. Vladimir, I. Jovanović, and M. Koričan. 2022. “Application of Fuel Cells with Zero-Carbon Fuels in Short-Sea Shipping.” Applied Energy 309:118463. https://doi.org/10.1016/j.apenergy.2021.118463.
  • Ramadhani, F., M. A. Hussain, H. Mokhlis, and O. Erixno. 2022. “Solid Oxide Fuel Cell-Based Polygeneration Systems in Residential Applications: A Review of Technology, Energy Planning and Guidelines for Optimizing the Design.” Processes 10 (10): 2126. https://doi.org/10.3390/pr10102126.
  • Raza, T., J. Yang, R. Wang, C. Xia, R. Raza, B. Zhu, and S. Yun. 2022. “Recent Advance in Physical Description and Material Development for Single Component SOFC: A Mini-Review.” Chemistry Engineering Journal 444:136533. https://doi.org/10.1016/j.cej.2022.136533.
  • Salim, K. M., R. Maelah, H. Hishamuddin, A. M. Amir, and M. N. Ab Rahman. 2022. “Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review.” Sustainability 14 (19): 12380. https://doi.org/10.3390/su141912380.
  • Scataglini, R., M. Wei, A. Mayyas, S. H. Chan, T. Lipman, and M. Santarelli. 2017. “A direct manufacturing cost model for solid‐oxide fuel cell stacks.” Fuel Cells 17 (6): 825–842.
  • Scolaro, M., and N. Kittner. 2022. “Optimizing Hybrid Offshore Wind Farms for Cost-Competitive Hydrogen Production in Germany.” International Journal of Hydrogen Energy 47 (10): 6478–6493. https://doi.org/10.1016/j.ijhydene.2021.12.062.
  • Singh, M., D. Zappa, and E. Comini. 2021. “Solid Oxide Fuel Cell: Decade of Progress, Future Perspectives and Challenges.” International Journal of Hydrogen Energy 46 (54): 27643–27674. https://doi.org/10.1016/j.ijhydene.2021.06.020.
  • Smith, L., T. Ibn-Mohammed, F. Yang, I. M. Reaney, D. C. Sinclair, and S. C. L. Koh. 2019. “Comparative Environmental Profile Assessments of Commercial and Novel Material Structures for Solid Oxide Fuel Cells.” Applied Energy 235:1300–1313. https://doi.org/10.1016/j.apenergy.2018.11.028.
  • Spreafico, C., D. Landi, and D. Russo. 2023. “A New Method of Patent Analysis to Support Prospective Life Cycle Assessment of Eco-Design Solutions.” Sustainable Production and Consumption 38:241–251. https://doi.org/10.1016/j.spc.2023.04.006.
  • Stocker, T., ed. 2013. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
  • Subotić, V., A. Baldinelli, L. Barelli, R. Scharler, G. Pongratz, C. Hochenauer, and A. Anca-Couce. 2019. “Applicability of the SOFC Technology for Coupling with Biomass-Gasifier Systems: Short-And Long-Term Experimental Study on SOFC Performance and Degradation Behaviour.” Applied Energy 256:113904. https://doi.org/10.1016/j.apenergy.2019.113904.
  • Sugihara, K., M. Asamoto, Y. Itagaki, T. Takemasa, S. Yamaguchi, Y. Sadaoka, and H. Yahiro. 2014. “A Quantitative Analysis of Influence of Ni Particle Size of SDC-Supported Anode on SOFC Performance: Effect of Particle Size of SDC Support.” Solid State Ionics 262:433–437. https://doi.org/10.1016/j.ssi.2014.02.012.
  • Tanveer, W. H., M. A. Abdelkareem, B. W. Kolosz, H. Rezk, J. Andresen, S. W. Cha, and E. T. Sayed. 2021. “The Role of Vacuum Based Technologies in Solid Oxide Fuel Cell Development to Utilize Industrial Waste Carbon for Power Production.” Renewable and Sustainable Energy Reviews 142:110803. https://doi.org/10.1016/j.rser.2021.110803.
  • Thonemann, N., A. Schulte, and D. Maga. 2020. “How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance.” Sustainability 12 (3): 1192. https://doi.org/10.3390/su12031192.
  • Vargas, J. E. V., and J. E. A. Seabra. 2021. “Fuel-Cell Technologies for Private Vehicles in Brazil: Environmental Mirage or Prospective Romance? A Comparative Life Cycle Assessment of PEMFC and SOFC Light-Duty Vehicles.” Science of the Total Environment 798:149265. https://doi.org/10.1016/j.scitotenv.2021.149265.
  • Wang, Q., B. Spasova, V. Hessel, and G. Kolb. 2015. “Methane Reforming in a Small-Scaled Plasma Reactor–Industrial Application of a Plasma Process from the Viewpoint of the Environmental Profile.” Chemistry Engineering Journal 262:766–774. https://doi.org/10.1016/j.cej.2014.09.091.
  • Yang, F., L. Jia, Y. Zhou, D. Guan, K. Feng, Y. Choi, and J. Li. 2022. “Life Cycle Assessment Shows That Retrofitting Coal-Fired Power Plants with Fuel Cells Will Substantially Reduce Greenhouse Gas Emissions.” One Earth 5 (4): 392–402. https://doi.org/10.1016/j.oneear.2022.03.009.
  • Yasar, O., E. Ozbek, S. Ekici, E. Yalcin, A. Midilli, and T. H. Karakoç. 2021. “Assessment of Fuel Cell Studies with Particle Image Velocimetry Applications: A Key Review.” International Journal of Hydrogen Energy 46 (57): 29568–29582. https://doi.org/10.1016/j.ijhydene.2021.05.027.
  • Zeng, Z., Y. Qian, Y. Zhang, C. Hao, D. Dan, and W. Zhuge. 2020. “A Review of Heat Transfer and Thermal Management Methods for Temperature Gradient Reduction in Solid Oxide Fuel Cell (SOFC) Stacks.” Applied Energy 280:115899. https://doi.org/10.1016/j.apenergy.2020.115899.
  • Zhang, W., and Y. H. Hu. 2023. “Recent Progress in Design and Fabrication of SOFC Cathodes for Efficient Catalytic Oxygen Reduction.” Catalysis Today 409:71–86. https://doi.org/10.1016/j.cattod.2022.05.008.
  • Zhao, Y., H. Xue, L. Jiang, X. Jin, H. Fu, and X. Xie. 2023. “Proposal and Assessment of a Solid Oxide Fuel Cell Cogeneration System in Order to Produce High-Temperature Steam Aiming at Industrial Applications.” Applied Thermal Engineering 221:119882. https://doi.org/10.1016/j.applthermaleng.2022.119882.
  • Zhong, L., E. Yao, H. Zou, and G. Xi. 2021. “Thermo-Economic-Environmental Analysis of an Innovative Combined Cooling and Power System Integrating Solid Oxide Fuel Cell, Supercritical CO2 Cycle, and Ejector Refrigeration Cycle.” Sustainable Energy Technologies and Assessments 47:101517. https://doi.org/10.1016/j.seta.2021.101517.