357
Views
11
CrossRef citations to date
0
Altmetric
Articles

Deep neural network approach for annual luminance simulations

, ORCID Icon & ORCID Icon
Pages 532-554 | Received 14 May 2020, Accepted 26 Jul 2020, Published online: 23 Aug 2020

References

  • Ahmad, M. W., J. Hippolyte, M. Mourshed, and Y. Rezgui. 2017. “Random Forests and Artificial Neural Network for Predicting Daylight Illuminance and Energy Consumption.” Proceedings of IBPSA 2017: 1949–1955.
  • Ayoub, M. 2020. “A Review on Machine Learning Algorithms to Predict Daylighting Inside Buildings.” Solar Energy 202: 249–275.
  • Bako, S., T. Vogels, B. McWilliams, M. Meyer, J. Novák, A. Harvill, P. Sen, T. DeRose, and F. Rousselle. 2017. “Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings.” ACM Transactions on Graphics 36 (4): Article 97.
  • Chaitanya, C. R. A., A. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D. Nowrouzezahrai, and T. Aila. 2017. “Interactive Reconstruction of Noisy Monte Carlo Image Sequences Using a Recurrent Autoencoder.” ACM Transactions on Graphics 36 (4): Article 98.
  • Debevec, P., and J. Malik. 1997. “Recovering High Dynamic Range Radiance Maps from Photographs.” Proceedings of SIGGRAPH 97: 369–378.
  • Fechner, G. T., D. H. Howes, and E. G. Boring, eds. 1966. In Elements of Psychophysics (Elemente der Psychophysik). Vol. 1. New York, USA: Holt, Rinehart and Winston. Translated by H. E. Adler.
  • Gardner, M. A., K. Sunkavalli, E. Yumer, X. Shen, E. Gambaretto, C. Gagne, and J. F. Lalonde. 2017. “Learning to Predict Indoor Illumination from a Single Image.” ACM Transactions on Graphics 36 (6): Article 176.
  • Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge: The MIT Press.
  • Grobe, L. 2019. “Photon-mapping in Climate-based Daylight Modelling with High-resolution BSDFs.” Energy and Buildings 205: 109524.
  • Hahnloser, R. H. R., R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung. 2000. “Digital Selection and Analogue Amplification Coexist in a Cortex-inspired Silicon Circuit.” Nature 405: 947–951.
  • Hold-Geoffroy, Y., K. Sunkavalli, S. Hadap, E. Gambaretto, and J. F. Lalonde. 2017. “Deep Outdoor Illumination Estimation.” IEEE Conference on Computer Vision and Pattern Recognition, 7312–7321.
  • Hošek, L., and A. Wilkie. 2012. “An Analytic Model for Full Spectral Sky-dome Radiance.” ACM Transactions on Graphics 31 (4): 1–9.
  • Inanici, M. 2006. “Evaluation of High Dynamic Range Photography as a Luminance Data Acquisition System.” Lighting Research and Technology 38 (2): 123–136.
  • Inanici, M. 2013. “Dynamic Daylighting Simulations from Static High Dynamic Range Imagery Using Extrapolation and Daylight Coefficient Methodologies.” Proceedings of IBPSA 2013: 3392–3399.
  • Jakubiec, J. A., and C. F. Reinhart. 2012. “The ‘Adaptive Zone’ – A Concept for Assessing Discomfort Glare Throughout Daylit Spaces.” Lighting Research and Technology 44 (2): 149–170.
  • Jones, N. L., and C. F. Reinhart. 2017. “Experimental Validation of Ray Tracing as a Means of Image-based Visual Discomfort Prediction.” Building and Environment 113: 131–150.
  • Jones, N. L., and C. F. Reinhart. 2019. “Effects of Real-time Simulation Feedback on Design for Visual Comfort.” Journal of Building Performance Simulation 12 (3): 343–361.
  • Karandikar, R. V. 1955. “Luminance of the Sun.” Journal of the Optical Society of America 45 (6): 483–488.
  • Katsanou, V. N., M. C. Alexiadis, and D. P. Labridis. 2019. “An ANN-Based Model for the Prediction of Internal Lighting Conditions and User Actions in Non-residential Buildings.” Journal of Building Performance Simulation 12 (5): 700–718.
  • Kazanasmaz, T., M. Gunaydin, and S. Binol. 2009. “Artificial Neural Networks to Predict Daylight Illuminance in Office Buildings.” Building and Environment 44: 1751–1757.
  • Kingma, D. P., and J. L. Ba. 2015. “Adam: A Method for Stochastic Optimization.” International Conference on Learning Representations.
  • Konis, K. 2014. “Predicting Visual Comfort in Side-lit Open-plan Core Zones: Results of a Field Study Pairing High Dynamic Range Images with Subjective Responses.” Energy and Buildings 77: 67–79.
  • LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. 1998. “Gradient-based Learning Applied to Document Recognition.” Proceedings of the IEEE 86 (11): 2278–2324.
  • Lee, E. S., D. Geisler-Moroder, and G. Ward. 2018. “Modeling the Direct sun Component in Buildings Using Matrix Algebraic Approaches: Methods and Validation.” Solar Energy 160: 380–395.
  • McCulloch, W. S., and W. Pitts. 1943. “A Logical Calculus of the Ideas Immanent in Nervous Activity.” Bulletin of Mathematical Biophysics 5: 115–133.
  • McNeil, A., C. J. Jonsson, D. Appelfeld, G. Ward, and E. S. Lee. 2013. “A Validation of a Ray-tracing Tool Used to Generate Bi-directional Scattering Distribution Functions for Complex Fenestration Systems.” Solar Energy 98: 404–414.
  • Nabil, A., and J. Mardaljevic. 2005. “Useful Daylight Illuminance: A New Paradigm for Assessing Daylight in Buildings.” Lighting Research and Technology 37 (1): 41–57.
  • Nair, V., and G. E. Hinton. 2010. “Rectified Linear Units Improve Restricted Boltzmann Machines.” Proceedings of the 27th International Conference on International Conference on Machine Learning, 807–814.
  • Perez, R., R. Seals, and J. Michalsky. 1993. “All-weather Model for Sky Luminance Distribution—Preliminary Configuration and Validation.” Solar Energy 50 (3): 235–245.
  • Reinhart, C., J. Mardaljevic, and Z. Rogers. 2006. “Dynamic Daylight Performance Metrics for Sustainable Building Design.” Leukos 3 (1): 7–31.
  • Ren, P., Y. Dong, S. Lin, X. Tong, and B. Guo. 2015. “Image Based Relighting Using Neural Networks.” ACM Transactions on Graphics 34 (4): Article 111.
  • Rizzi, A., T. Algeri, G. Medeghini, and D. Marini. 2004. “A Proposal for Contrast Measure in Digital Images.” Proceedings of Conference on Color in Graphics, Imaging and Vision, 187–192.
  • Rockcastle, S., M. L. Amundodottir, and M. Andersen. 2017. “Contrast Measures for Predicting Perceptual Effects of Daylight in Architectural Renderings.” Lighting Research and Technology 49 (7): 882–903.
  • Sahin, M., Y. Oguz, and F. Büyüktümtürk. 2016. “ANN-based Estimation of Time-dependent Energy Loss in Lighting Systems.” Energy and Buildings 116: 455–467.
  • Satilmis, P., T. Bashford-Rogers, A. Chalmers, and K. Debattista. 2016. “A Machine Learning Driven Sky Model.” IEEE Computer Graphics and Applications 37 (1): 80–91.
  • Schregle, R., L. Grobe, and S. Wittkopf. 2016. “An Out-of-core Photon Mapping Approach to Daylight Coefficients.” Journal of Building Performance Simulation 9 (6): 620–632.
  • Suk, J. Y., M. Schiler, and K. Kensek. 2013. “Development of New Daylight Glare Analysis Methodology Using Absolute Glare Factor and Relative Glare Factor.” Energy and Buildings 64: 113–122.
  • Tregenza, P. R., and I. M. Waters. 1983. “Daylight Coefficients.” Lighting Research and Technology 15 (2): 65–71.
  • van Den Wymelenberg, K., and M. Inanici. 2016. “Evaluating a New Suite of Luminance-based Design Metrics for Predicting Human Visual Comfort in Offices with Daylight.” Leukos 12 (3): 1–26.
  • Wagdy, A., V. Garcia-Hansen, M. Elhenawy, G. Isoardi, R. Drogemuller, and F. Fathy. 2020. “Open-plan Glare Evaluator (OGE): A Demonstration of a New Glare Prediction Approach Using Machine Learning Algorithms.” arXiv: Learning.
  • Ward, G. 1994. “The RADIANCE Lighting Simulation and Rendering System.” Proceedings of SIGGRAPH 94: 459–472.
  • Ward, G., R. Mistrick, E. S. Lee, A. Mcneil, and J. Jonsson. 2011. “Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions Within Radiance.” Leukos 7 (4): 241–261.
  • Wienold, J., and J. Christoffersen. 2006. “Evaluation Methods and Development of a New Glare Prediction Model for Daylight Environments with the Use of CCD Cameras.” Energy and Buildings 38 (7): 743–757.
  • Xu, X., K. Sunkavalli, S. Hadap, and R. Ramamoorthi. 2018. “Deep Image-Based Relighting From Optimal Sparse Samples.” ACM Transactions on Graphics 37 (4): Article 126.
  • Zuo, W., A. McNeil, M. Wetter, and E. S. Lee. 2011. “Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL.” Proceedings of IBPSA 2011: 110–117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.