436
Views
5
CrossRef citations to date
0
Altmetric
Articles

Fluid temperature predictions of geothermal borefields using load estimations via state observers

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-19 | Received 15 Jun 2020, Accepted 13 Oct 2020, Published online: 05 Nov 2020

References

  • Ali, J. M., N. H. Hoang, M. A. Hussain, and D. Dochain. 2015. “Review and Classification of Recent Observers Applied in Chemical Process Systems.” Computers & Chemical Engineering 76: 27–41. doi: 10.1016/j.compchemeng.2015.01.019
  • Atam, E., D. O. Schulte, A. Arteconi, I. Sass, and L. Helsen. 2018. “Control-oriented Modeling of Geothermal Borefield Thermal Dynamics Through Hammerstein-Wiener Models.” Renewable Energy120: 468–477. doi:10.1016/j.renene.2017.12.105
  • Bauer, D., W. Heidemann, and H.-J. Diersch. 2011. “Transient 3D Analysis of Borehole Heat Exchanger Modeling.” Geothermics 40 (4): 250–260. doi:10.1016/j.geothermics.2011.08.001
  • Bauer, D., W. Heidemann, H. Müller-Steinhagen, and H.-J. Diersch. 2011. “Thermal Resistance and Capacity Models for Borehole Heat Exchangers.” International Journal of Energy Research 35 (4): 312–320. doi:10.1002/er.1689
  • Bernier, M. A., P. Pinel, R. Labib, and R. Paillot. 2004. “A Multiple Load Aggregation Algorithm for Annual Hourly Simulations of Gchp Systems.” HVAC&R Research 10 (4): 471–487. doi: 10.1080/10789669.2004.10391115
  • Carslaw, H. S., and J. C. Jaeger. 1959. Conduction of Heat in Solids. 2nd ed. Oxford: Clarendon Press.
  • Cimmino, M. 2018. “Fast Calculation of the G-functions of Geothermal Borehole Fields Using Similarities in the Evaluation of the Finite Line Source Solution.” Journal of Building Performance Simulation 11 (6): 655–668. doi:10.1080/19401493.2017.1423390
  • Cimmino, M., and M. Bernier. 2014. “A Semi-analytical Method to Generate G-functions for Geothermal Bore Fields.” International Journal of Heat and Mass Transfer 70: 641–650. doi:10.1016/j.ijheatmasstransfer.2013.11.037.
  • Claesson, J., and P. Eskilson. 1988. “Conductive Heat Extraction to a Deep Borehole: Thermal Analyses and Dimensioning Rules.” Energy 13 (6): 509–527. doi: 10.1016/0360-5442(88)90005-9
  • Claesson, J., and G. Hellström. 2011. “Multipole Method to Calculate Borehole Thermal Resistances in a Borehole Heat Exchanger.” HVAC&R Research 17 (6): 895–911.
  • Claesson, J., and S. Javed. 2012. “A Load-aggregation Method to Calculate Extraction Temperatures of Borehole Heat Exchangers.” ASHRAE Transactions 118 (1): 530–539.
  • Cupeiro Figueroa, I., J. Drgoňa, M. Abdollahpouri, D. Picard, and L. Helsen. 2018. “State Observer for Optimal Control Using White-Box Building Models.” In Proceedings of Purdue Herrick Conferences, West Lafayette (USA), July 9–12
  • Cupeiro Figueroa, I., J. Drgoňa, and L. Helsen. 2019b. “State Estimators Applied to a Linear White-Box Geothermal Borefield Controller Model.” In Proceedings of International Building Simulation Conference 2019, September 3–5, Rome (Italy)
  • Cupeiro Figueroa, I., D. Picard, and L. Helsen. 2019a. “Short-term Modeling of Hybrid Geothermal Systems for Model Predictive Control.” Energy and Buildings 25 (8): 1095–1110. doi:10.1080/23744731.2019.1620564
  • De Ridder, F., M. Diehl, G. Mulder, J. Desmedt, and J. Van Bael. 2011. “An Optimal Control Algorithm for Borehole Thermal Energy Storage Systems.” Energy and Buildings 43 (10): 2918–2925. doi:10.1016/j.enbuild.2011.07.015
  • Drgoňa, J. 2019. “BeSim Toolbox: Fast Development, and Simulation of Advanced Building Control.” https://github.com/drgona/BeSim.
  • Eskilson, P. 1987. “Thermal Analysis of Heat Extraction Boreholes.” Ph.D., Doctoral dissertation, Thesis., Department of Mathematical Physics, University of Lund Lund, Sweden.
  • Fasci, M. L., A. Lazzarotto, J. Acuña, and J. Claesson. 2019. “Analysis of the Thermal Interference Between Ground Source Heat Pump Systems in Dense Neighborhoods.” Science and Technology for the Built Environment 25 (8): 1069–1080. doi:10.1080/23744731.2019.1648130
  • Frison, G., and J. Jorgensen. 2013. “A Fast Condensing Method for Solution of Linear-Quadratic Control Problems.” In Proceedings of 52nd IEEE Conference on Decision and Control, 7715–7720.
  • Geotermische Screeningstool–SmartGeotherm. 2018. Geotermische Screeningstool–SmartGeotherm, http://tool.smartgeotherm.be/geo/alg, accessed: 6 September 2018.
  • G. Optimization: Inc. 2015. “Gurobi Optimizer Reference Manual.” 2015.
  • Hellström, G., and B. Sanner. 2000. “Earth Energy Designer.” User's Manual, version 2.
  • Ingersoll, L., and H. Plass. 1948. “Theory of the Ground Pipe Source for the Heat Pump.” ASHRAE Transactions 54: 339–348.
  • Javed, S., and J. Spitler. 2017. “Accuracy of Borehole Thermal Resistance Calculation Methods for Grouted Single U-tube Ground Heat Exchangers.” Applied Energy 187: 790–806. doi:10.1016/j.apenergy.2016.11.079
  • Kühl, P., M. Diehl, T. Kraus, J. P. Schlöder, and H. G. Bock. 2011. “A Real-time Algorithm for Moving Horizon State and Parameter Estimation.” Computers & Chemical Engineering 35 (1): 71–83. doi: 10.1016/j.compchemeng.2010.07.012
  • Laferrière, A., and M. Cimmino. 2018. “Model Predictive Control Applied to Residential Self-Assisted Ground Source Heat Pumps.” In Proceedings of International Ground Source Heat Pump Association Research Track, September 18–20, Stockholm (Sweden).
  • Laferrière, A., and M. Cimmino. 2019. “Linear Model Predictive Control for the Reduction of Auxiliary Electric Heating in Residential Self-assisted Ground-source Heat Pump Systems.” Science and Technology for the Built Environment 25 (8): 1095–1110. doi:10.1080/23744731.2019.1620564
  • Laferrière, A., M. Cimmino, D. Picard, and L. Helsen. 2020. “Development and Validation of a Full-time-scale Semi-analytical Model for the Short- and Long-term Simulation of Vertical Geothermal Bore Fields.” Geothermics 86. doi:10.1016/j.geothermics.2019.101788.
  • Lamarche, L., S. Kajl, and B. Beauchamp. 2010. “A Review of Methods to Evaluate Borehole Thermal Resistances in Geothermal Heat-pump Systems.” Geothermics 39 (2): 187–200. doi:10.1016/j.geothermics.2010.03.003
  • Leonard, B. 1979. “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation.” Computer Methods in Applied Mechanics and Engineering 19 (1): 59–98. doi:10.1016/0045-7825(79)90034-3
  • Löfberg, J. 2004. “YALMIP: A Toolbox for Modeling and Optimization in MATLAB Proc.” In CACSD Conf.(Taipei). http://control.ee.ethz.ch./joloef/yalmip.php.
  • Mitchell, M. S., and J. D. Spitler. 2019. “Characterization, Testing, and Optimization of Load Aggregation Methods for Ground Heat Exchanger Response-factor Models.” Science and Technology for the Built Environment 25 (8): 1036–1051. doi:10.1080/23744731.2019.1648936
  • Pasquier, P., and D. Marcotte. 2014. “Joint Use of Quasi-3D Response Model and Spectral Method to Simulate Borehole Heat Exchanger.” Geothermics 51: 281–299. doi:10.1016/j.geothermics.2014.02.001
  • Puttige, A. R., S. Andersson, R. Östin, and T. Olofsson. 2020. “Improvement of Borehole Heat Exchanger Model Performance by Calibration Using Measured Data.” Journal of Building Performance Simulation 13 (4): 430–442. doi:10.1080/19401493.2020.1761451
  • Rao, C. V., J. B. Rawlings, and D. Q. Mayne. 2003. “Constrained State Estimation for Nonlinear Discrete-time Systems: Stability and Moving Horizon Approximations.” IEEE Transactions on Automatic Control 48 (2): 246–258. doi: 10.1109/TAC.2002.808470
  • Shirazi, A. S., and M. Bernier. 2013. “Thermal Capacity Effects in Borehole Ground Heat Exchangers.” Energy and Buildings 67: 352–364. doi:10.1016/j.enbuild.2013.08.023
  • Verhelst, C., and L. Helsen. 2011. “Low-order State Space Models for Borehole Heat Exchangers.” HVAC&R Research 17: 928–947. doi:10.1080/10789669.2011.617188
  • Witte, H. J., A. Cazorla-Marín, and J. M. Corberán. 2018. “An Efficient Borehole Heat Exchanger Model for the Analysis of Transient Thermal Response: Comparison With Some Existing Models.” In Proceedings of EnerSTOCK 2018, April 25–28, Adana (Turkey).
  • Zarrella, A., M. Scarpa, and M. D. Carli. 2011. “Short Time Step Analysis of Vertical Ground-coupled Heat Exchangers: The Approach of CARM.” Renewable Energy 36 (9): 2357–2367. doi:10.1016/j.renene.2011.01.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.