340
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal resilience in a renovated nearly zero-energy dwelling during intense heat waves

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 19 Apr 2023, Accepted 21 Aug 2023, Published online: 01 Sep 2023

References

  • AdaptNSW. 2022. “Climate Change Impacts on Heatwaves.” AdaptNSW, [Online]. Accessed October 19, 2022. https://www.climatechange.environment.nsw.gov.au/heatwaves.
  • Altena, E., C. Baglioni, E. Sanz-Arigita, C. Cajochen, and D. Riemann. 2022. “How to Deal with Sleep Problems During Heatwaves: Practical Recommendations from the European Insomnia Network.” Journal of Sleep Research, e13704. https://doi.org/10.1111/jsr.13704.
  • Amaripadath, D., R. Rahif, W. Zuo, M. Velickovic, C. Voglaire, and S. Attia. 2023. “Climate Change Sensitive Sizing and Design for Nearly Zero-Energy Office Building Systems in Brussels.” Energy and Buildings 286: 112971. https://doi.org/10.1016/j.enbuild.2023.112971.
  • Amaripadath, D., M. Velickovic, and S. Attia. 2022. “Performance Evaluation of a Nearly Zero-Energy Office Building in Temperate Oceanic Climate Based on Field Measurements.” Energies 15 (18), https://doi.org/10.3390/en15186755.
  • ANSI/ASHRAE. 2013. ASHRAE Standard 169: Climatic Data for Building Design Standards. Atlanta, GA, USA: American Society of Heating, Refrigerating and Air Conditioning Engineers.
  • ANSI/ASHRAE. 2014. ASHRAE Guideline 14: Measurement of Energy, Demand, and Water Savings. Atlanta, GA, USA: American Society of Heating, Refrigerating and Air Conditioning Engineers.
  • ANSI/ASHRAE. 2017. ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy. Atlanta, GA, USA: American Society of Heating, Refrigerating and Air Conditioning Engineers.
  • Attia, S. 2021. “Benchmark Model for Nearly-Zero-Energy Terraced Dwellings.” Harvard Dataverse, https://doi.org/10.7910/DVN/GJI84W.
  • Attia, S. 2023. “11 - Resilient Cooling of Buildings to Protect Against Heatwaves and Power Outages.” In Adapting the Built Environment for Climate Change, edited by F. Pacheco-Torgal, and C.-G. Granqvist, 215–228. Woodhead Publishing. https://doi.org/10.1016/B978-0-323-95336-8.00014-7.
  • Attia, S., C. Benzidane, R. Rahif, D. Amaripadath, M. Hamdy, P. Holzer, A. Koch, et al. 2023. “Overheating Calculation Methods, Criteria, and Indicators in European Regulation for Residential Buildings.” Energy and Buildings 292: 113170. https://doi.org/10.1016/j.enbuild.2023.113170.
  • Attia, S., T. Canonge, M. Popineau, and M. Cuchet. 2022. “Developing a Benchmark Model for Renovated, Nearly Zero-Energy, Terraced Dwellings.” Applied Energy 306: 118128. https://doi.org/10.1016/j.apenergy.2021.118128.
  • Attia, S., et al. Feb. 2021. Framework to Evaluate the Resilience of Different Cooling Technologies. Sustainable Building Design Lab. https://doi.org/10.13140/RG.2.2.33998.59208.
  • Attia, S., and C. Gobin. 2020. “Climate Change Effects on Belgian Households: A Case Study of a Nearly Zero Energy Building.” Energies 13 (20): 5357. https://doi.org/10.3390/en13205357.
  • Attia, S., R. Levinson, E. Ndongo, P. Holzer, O. Berk Kazanci, S. Homaei, C. Zhang, et al. 2021. “Resilient Cooling of Buildings to Protect Against Heat Waves and Power Outages: Key Concepts and Definition.” Energy and Buildings 239: 110869. https://doi.org/10.1016/j.enbuild.2021.110869.
  • Attia, S., N. Shadmanfar, and F. Ricci. 2020. “Developing two Benchmark Models for Nearly Zero Energy Schools.” Applied Energy 263: 114614. https://doi.org/10.1016/j.apenergy.2020.114614.
  • Baborska-Narożny, M., F. Stevenson, and M. Grudzińska. 2017. “Overheating in Retrofitted Flats: Occupant Practices, Learning and Interventions.” Building Research & Information 45 (1–2): 40–59. https://doi.org/10.1080/09613218.2016.1226671.
  • Baccini, M., A. Biggeri, G. Accetta, T. Kosatsky, K. Katsouyanni, A. Analitis, H. R. Anderson, et al. 2008. “Heat Effects on Mortality in 15 European Cities.” Epidemiology 19 (5): 711–719. https://doi.org/10.1097/EDE.0b013e318176bfcd.
  • Brits, E., I. Boone, B. Verhagen, M. Dispas, H. Vanoyen, Y. Van der Stede, and A. Van Nieuwenhuyse. 2009. “Climate Change and Health - Set-Up of Monitoring of Potential Effects of Climate Change on Human Health and on the Health of Animals in Belgium,” Scientific Institute of Public Health. https://www.belspo.be/belspo/organisation/publ/pub_ostc/agora/ragjj146_en.pdf.
  • Bueno, B., L. Norford, J. Hidalgo, and G. Pigeon. 2013. “The Urban Weather Generator.” Journal of Building Performance Simulation 6 (4): 269–281. https://doi.org/10.1080/19401493.2012.718797.
  • Cao, T., Z. Lian, J. Zhu, X. Xu, H. Du, and Q. Zhao. 2022. “Parametric Study on the Sleep Thermal Environment.” Building Simulation 15 (5): 885–898. https://doi.org/10.1007/s12273-021-0840-5.
  • Carlier, M. 2016. “Nearly Zero-Energy Building Definitions in Selected Countries.” Master thesis, Ghent University, Ghent, Belgium. [Online]. www.libstore.ugent.be/fulltxt/RUG01/002/301/108/RUG01-002301108_2016_0001_AC.pdf.
  • Carlucci, S., and L. Pagliano. 2012. “A Review of Indices for the Long-Term Evaluation of the General Thermal Comfort Conditions in Buildings.” Energy and Buildings 53: 194–205. https://doi.org/10.1016/j.enbuild.2012.06.015.
  • CEN. 2019. EN 16798-1: Energy Performance of Buildings - Ventilation for Buildings - Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor air Quality, Thermal Environment, Lighting and Acoustics. Brussels, Belgium: European Committee for Standardization.
  • Chesini, F., N. Herrera, M. d. l. M. Skansi, C. G. Morinigo, S. Fontán, F. Savoy, and E. d. Titto. 2022. “Mortality Risk During Heat Waves in the Summer 2013-2014 in 18 Provinces of Argentina: Ecological Study.” Ciência & Saúde Coletiva 27 (5): 2071–2086. https://doi.org/10.1590/1413-81232022275.07502021.
  • Coskun, C. 2010. “A Novel Approach to Degree-Hour Calculation: Indoor and Outdoor Reference Temperature Based Degree-Hour Calculation.” Energy 35 (6): 2455–2460. https://doi.org/10.1016/j.energy.2010.02.038.
  • De Bono, A., G. Giuliani, S. Kluser, and P. Peduzzi. 2004. “Impacts of Summer 2003 Heat Wave in Europe.” UNEP [Online]. Accessed October 06, 2022. https://www.unisdr.org/files/1145_ewheatwave.en.pdf.
  • DesignBuilder. 2023. “Outside Air.” DesignBuilder, Stroud, UK. [Online]. Accessed May 23, 2023. https://designbuilder.co.uk/helpv7.0/Content/Outside_Air.htm.
  • Economie. 2022. “Energy Key Data.” FPS Economy Self-Employed and Energy. [Online]. Accessed November 21, 2022. https://economie.fgov.be/en/file/2970575/download?token=bESHUgsY.
  • Edwards, L. M., et al. 2006. “A Review of the July 2006 Heat Wave in California.” AGU Fall Meeting Abstracts 2006: A13D–0971.
  • Encon. 2022. “Calculation of CO2.” Encon. [online]. Accessed July 11, 2022. www.encon.be/en/calculation-co2.
  • Enterprise. 2022. “What Are Residential VRF Systems & Why Should You Choose Them?” 22/7 Enterprise. [Online]. Accessed November 17, 2022. https://227enterprise.com/what-are-residential-vrf-systems/.
  • Eurostat. 2022. “Gross Domestic Product (GDP) at Current Market Prices by Metropolitan Regions.” European Commission, Luxembourg. [online]. Accessed November 01, 2022. https://ec.europa.eu/eurostat/databrowser/view/MET_10R_3GDP/default/table?lang=en.
  • Flores-Larsen, S., F. Bre, and M. Hongn. 2022. “A Performance-Based Method to Detect and Characterize Heatwaves for Building Resilience Analysis.” Renewable and Sustainable Energy Reviews 167: 112795. https://doi.org/10.1016/j.rser.2022.112795.
  • Fouillet, A., G. Rey, F. Laurent, G. Pavillon, S. Bellec, C. Guihenneuc-Jouyaux, J. Clavel, E. Jougla, and Denis Hémon. 2006. “Excess Mortality Related to the August 2003 Heat Wave in France.” International Archives of Occupational and Environmental Health 80 (1): 16–24. https://doi.org/10.1007/s00420-006-0089-4.
  • Gupta, R., and M. Kapsali. 2016. “Empirical Assessment of Indoor air Quality and Overheating in low-Carbon Social Housing Dwellings in England, UK.” Advances in Building Energy Research 10 (1): 46–68. https://doi.org/10.1080/17512549.2015.1014843.
  • Hamdy, M., S. Carlucci, P. J. Hoes, and J. L. M. Hensen. 2017a. “The Impact of Climate Change on the Overheating Risk in Dwellings - A Dutch Case Study.” Building and Environment 122: 307–323. https://doi.org/10.1016/j.buildenv.2017.06.031.
  • Hamdy, M., K. Sirén, and S. Attia. 2017b. “Impact of Financial Assumptions on the Cost Optimality Towards Nearly Zero Energy Buildings – a Case Study.” Energy and Buildings 153: 421–438. https://doi.org/10.1016/j.enbuild.2017.08.018.
  • Holzer, P., and W. Cooper. 2019. “IEA EBC Annex 80 on Resilient Cooling for Residential and Small non-Residential Buildings.” IEA, https://doi.org/10.13140/RG.2.2.33912.47368.
  • Homaei, S., and M. Hamdy. 2021. “Thermal Resilient Buildings: How to be Quantified? A Novel Benchmarking Framework and Labelling Metric.” Building and Environment 201: 108022. https://doi.org/10.1016/j.buildenv.2021.108022.
  • HSE. 2010. “Temperature at Work,” Health & Safety Information, Merseyside, UK, 2010. [Online]. Available: https://www.unison.org.uk/content/uploads/2013/06/Briefings-and-CircularsTemperature-at-Work-Information-Health-and-Safety-Information-Sheet2.pdf. Accessed: November 11, 2022.
  • Hughes, L., E. Hanna, and J. Fenwick. 2016. “The Silent Killer: Climate Change and the Health Impacts of Extreme Heat.” Climate council, Potts Point, Australia, 2016. [Online]. Accessed October 06, 2022. https://www.climatecouncil.org.au/uploads/b6cd8665c633434e8d02910eee3ca87c.pdf.
  • IBGE. 2017. “Performance Energétique des Bâtiments: Guide des exigences et des procédures de la 960 réglementation Travaux PEB en Région de Bruxelles Capitale,” Brussels, Belgium, 2017.
  • ISO. 2005. ISO 7730: Ergonomics of the Thermal Environment - Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. Geneva, Switzerland: International Standards Organization.
  • ISO. 2009. ISO 15927-2: Hygrothermal Performance of Buildings - Calculation and Presentation of Climatic Data - Part 2: Hourly Data for Design Cooling Load. Geneva, Switzerland: International Standards Organization.
  • ISO. 2016. ISO 18523-2. Energy Performance of Buildings - Schedule and Condition of Building, Zone and Space Usage for Energy Calculation – Part 2: Residential Buildings. Geneva, Switzerland: International Standards Organization.
  • ISO, ISO 17772-1. 2017. Energy Performance of Buildings – Indoor Environmental Quality. Part 1: Indoor Environmental Input Parameters for the Design and Assessment of Energy Performance in Buildings. Geneva, Switzerland: International Standards Organization.
  • Ji, L., A. Laouadi, C. Shu, A. Gaur, M. Lacasse, and L. Wang. 2022. “Evaluating Approaches of Selecting Extreme hot Years for Assessing Building Overheating Conditions During Heatwaves.” Energy and Buildings 254: 111610. https://doi.org/10.1016/j.enbuild.2021.111610.
  • Joshi, M. Y., D. Amaripadath, A. Machard, and S. Attia. 2022. Heatwaves Identification Classification and Visualisation with Python: V.1.0.0. Zenodo. https://doi.org/10.5281/zenodo.7326894.
  • Kovats, R. S., and S. Hajat. 2008. “Heat Stress and Public Health: A Critical Review.” Annual Review of Public Health 29 (1): 41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843.
  • Lan, L., L. Pan, Z. Lian, H. Huang, and Y. Lin. 2014. “Experimental Study on Thermal Comfort of Sleeping People at Different air Temperatures.” Building and Environment 73: 24–31. https://doi.org/10.1016/j.buildenv.2013.11.024.
  • Legal Information Institute. 2022. “10 CFR § 431.97 - Energy Efficiency Standards and Their Compliance Dates.” Cornell Law School, NY, USA. [Online]. Accessed December 12, 2022. https://www.law.cornell.edu/cfr/text/10/431.97#fn1_tbl2.
  • Machard, A. 2022. AMachard/Assembling-Future-Weather-Files-Including-Heatwaves: V1.0.0. Zenodo. https://doi.org/10.5281/zenodo.7300024.
  • MapChart. 2022. “Create Your Own Custom Map.” MapChart. [Online]. Accessed October 10, 2022. https://www.mapchart.net/.
  • Marx, W., R. Haunschild, and L. Bornmann. 2021. “Heat Waves: A hot Topic in Climate Change Research.” Theoretical and Applied Climatology 146 (1): 781–800. https://doi.org/10.1007/s00704-021-03758-y.
  • Masson-Delmotte, V., et al. 2018. “Global Warming of 1.5°C.” An IPCC Special Report on the Impacts of Global Warming 1 (5).
  • Mavrogianni, A., A. Pathan, E. Oikonomou, P. Biddulph, P. Symonds, and M. Davies. 2017. “Inhabitant Actions and Summer Overheating Risk in London Dwellings.” Building Research & Information 45 (1–2): 119–142. https://doi.org/10.1080/09613218.2016.1208431.
  • Michelozzi, P., G. Accetta, M. De Sario, D. D'Ippoliti, C. Marino, M. Baccini, A. Biggeri, et al. 2009. “High Temperature and Hospitalizations for Cardiovascular and Respiratory Causes in 12 European Cities.” American Journal of Respiratory and Critical Care Medicine 179 (5): 383–389. https://doi.org/10.1164/rccm.200802-217OC.
  • Middel, A., N. Chhetri, and R. Quay. 2015. “Urban Forestry and Cool Roofs: Assessment of Heat Mitigation Strategies in Phoenix Residential Neighborhoods.” Urban Forestry & Urban Greening 14 (1): 178–186. https://doi.org/10.1016/j.ufug.2014.09.010.
  • Mirzabeigi, S., S. Homaei, M. Razkenari, and M. Hamdy. 2022. “The Impact of Building Retrofitting on Thermal Resilience Against Power Failure: A Case of air-Conditioned House.” Conference on building energy and environment, Montreal, Canada.
  • Morey, J., A. Beizaee, and A. Wright. 2020. “An Investigation Into Overheating in Social Housing Dwellings in Central England.” Building and Environment 176: 106814. https://doi.org/10.1016/j.buildenv.2020.106814.
  • NHBC. 2012. Overheating in new Homes: A Review of the Evidence. UK: National House Building Council.
  • Okamoto-Mizuno, K., and K. Mizuno. 2012. “Effects of Thermal Environment on Sleep and Circadian Rhythm.” Journal of Physiological Anthropology 31 (1): 14. https://doi.org/10.1186/1880-6805-31-14.
  • ONS. 2022. “Excess Mortality During Heat-Periods: June 01 to August 31, 2022.” Office for National Statistics, 2022. [Online]. Accessed May 22, 2023. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/excessmortalityduringheatperiods/englandandwales1juneto31august2022.
  • Ouzeau, G., J.-M. Soubeyroux, M. Schneider, R. Vautard, and S. Planton. 2016. “Heat Waves Analysis Over France in Present and Future Climate: Application of a new Method on the EURO-CORDEX Ensemble.” Climate Services 4: 1–12. https://doi.org/10.1016/j.cliser.2016.09.002.
  • Pathan, A., A. Mavrogianni, A. Summerfield, T. Oreszczyn, and M. Davies. 2017. “Monitoring Summer Indoor Overheating in the London Housing Stock.” Energy and Buildings 141: 361–378. https://doi.org/10.1016/j.enbuild.2017.02.049.
  • PMP. 2011. “Plate-forme Maison Passive: Le guide du passif en Belgique Francophone.” Vademecum, 2011. [Online]. Accessed December 15, 2022. https://www.maisonpassive.be/?Vademecum.
  • Porritt, S. M., P. C. Cropper, L. Shao, and C. I. Goodier. 2012. “Ranking of Interventions to Reduce Dwelling Overheating During Heat Waves.” Energy and Buildings 55: 16–27. https://doi.org/10.1016/j.enbuild.2012.01.043.
  • Pörtner, H.-O., et al. 2022. “Climate Change 2022: Impacts, adaptation and vulnerability.” IPCC 6th Assessment Report, 2022. [Online]. Accessed December 29, 2022. https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf.
  • Pyrgou, A., V. L. Castaldo, A. L. Pisello, F. Cotana, and M. Santamouris. 2017. “On the Effect of Summer Heatwaves and Urban Overheating on Building Thermal-Energy Performance in Central Italy.” Sustainable Cities and Society 28: 187–200. https://doi.org/10.1016/j.scs.2016.09.012.
  • Rajput, M., G. Augenbroe, B. Stone, M. Georgescu, A. Broadbent, S. Krayenhoff, and E. Mallen. 2022. “Heat Exposure During a Power Outage: A Simulation Study of Residences Across the Metro Phoenix Area.” Energy and Buildings 259: 111605. https://doi.org/10.1016/j.enbuild.2021.111605.
  • Rizwan, A. M., L. Y. C. Dennis, and C. Liu. 2008. “A Review on the Generation, Determination and Mitigation of Urban Heat Island.” Journal of Environmental Sciences 20 (1): 120–128. https://doi.org/10.1016/S1001-0742(08)60019-4.
  • RMI. 2022. “Opendata Meteo.” Royal Meteorological Institute, Brussels, Belgium, 2022. [Online]. Accessed July 21, 2022. https://opendata.meteo.be/.
  • Rumsey, P., J. Le Garrec, and A. Levasseur. Sep. 2021. “How Building Decarbonization Can Transform HVAC.” ASHRAE Journal 63 (9): 14–27. [Online] Accessed November 16, 2022. https://go.gale.com/ps/i.do?id=GALE%7CA689991717&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00012491&p=AONE&sw=w&userGroupName=anon%7Ee78966b4.
  • Sakka, A., M. Santamouris, I. Livada, F. Nicol, and M. Wilson. 2012. “On the Thermal Performance of low Income Housing During Heat Waves.” Energy and Buildings 49: 69–77. https://doi.org/10.1016/j.enbuild.2012.01.023.
  • Salimi, S., E. Estrella Guillén, and H. Samuelson. 2021. “Exceedance Degree-Hours: A new Method for Assessing Long-Term Thermal Conditions.” Indoor Air 31 (6): 2296–2311. https://doi.org/10.1111/ina.12855.
  • Sarofim, M. C., et al. 2016. Chapter 2: Temperature-related death and illness. In: The impacts of climate change on human health in the United States: A scientific assessment. U.S. Global Change Research Program. Available: https://health2016.globalchange.gov.
  • Shevchenko, O., S. Snizhko, S. Zapototskyi, H. Svintsitska, M. Matviienko, and A. Matzarakis. 2022. “Long-term Analysis of Thermal Comfort Conditions During Heat Waves in Ukraine.” Geographia Polonica 95 (1): 53–70. https://doi.org/10.7163/GPol.0226.
  • Skelhorn, C., S. Lindley, and G. Levermore. 2014. “The Impact of Vegetation Types on air and Surface Temperatures in a Temperate City: A Fine Scale Assessment in Manchester, UK.” Landscape and Urban Planning 121: 129–140. https://doi.org/10.1016/j.landurbplan.2013.09.012.
  • Stewart, I. D. 2011. “A Systematic Review and Scientific Critique of Methodology in Modern Urban Heat Island Literature.” International Journal of Climatology 31 (2): 200–217. https://doi.org/10.1002/joc.2141.
  • Stone, B., E. Mallen, M. Rajput, A. Broadbent, E. S. Krayenhoff, G. Augenbroe, and M. Georgescu. 2021a. “Climate Change and Infrastructure Risk: Indoor Heat Exposure During a Concurrent Heat Wave and Blackout Event in Phoenix, Arizona.” Urban Climate 36: 100787. https://doi.org/10.1016/j.uclim.2021.100787.
  • Stone, B., E. Mallen, M. Rajput, C. J. Gronlund, A. M. Broadbent, E. S. Krayenhoff, G. Augenbroe, M. S. O’Neill, and M. Georgescu. 2021b. “Compound Climate and Infrastructure Events: How Electrical Grid Failure Alters Heat Wave Risk.” Environmental Science & Technology 55 (10): 6957–6964. https://doi.org/10.1021/acs.est.1c00024.
  • Sy, I., B. Cissé, B. Ndao, M. Touré, A. A. Diouf, M. A. Sarr, O. Ndiaye, et al. 2021. “Heatwaves and Health Risks in the Northern Part of Senegal: Analysing the Distribution of Temperature Related Diseases and Associated Risk Factors.” https://doi.org/10.21203/rs.3.rs-1098485/v1.
  • Taylor, J., R. McLeod, G. Petrou, C. Hopfe, A. Mavrogianni, R. Castaño-Rosa, S. Pelsmakers, and K. Lomas. 2023. “Ten Questions Concerning Residential Overheating in Central and Northern Europe.” Building and Environment 234: 110154. https://doi.org/10.1016/j.buildenv.2023.110154.
  • USGBC. 2023. “Passive survivability and back-up power during disruptions.” United States Green Building Council, Washington, D.C., USA. [Online]. Accessed May 22, 2023. https://www.usgbc.org/credits/new-construction-core-and-shell-schools-new-construction-retail-new-construction-data-48.
  • Vecellio, D. J., S. T. Wolf, R. M. Cottle, and W. L. Kenney. 2022. “Evaluating the 35°C Wet-Bulb Temperature Adaptability Threshold for Young, Healthy Subjects (PSU HEAT Project).” Journal of Applied Physiology 132 (2): 340–345. https://doi.org/10.1152/japplphysiol.00738.2021.
  • Vellei, M., A. P. Ramallo-González, D. Coley, J. Lee, E. Gabe-Thomas, T. Lovett, and S. Natarajan. 2017. “Overheating in Vulnerable and non-Vulnerable Households.” Building Research & Information 45 (1–2): 102–118. https://doi.org/10.1080/09613218.2016.1222190.
  • WMO. 2022. “This Heatwave Is the New Normal.” World Meteorological Organization, 2022. [Online]. Accessed October 15, 2022. https://public.wmo.int/en/media/news/%E2%80%9C-heatwave-new-normal%E2%80%9D-says-wmo-secretary-general.
  • Wuebbles, D. J. 2017. “Climate Science Special Report: Fourth National Climate Assessment, Volume I.” United States Global Change Research Program. https://doi.org/10.7930/J0J964J6.
  • Zero Carbon Hub. 2015. Impacts of Overheating: Evidence Review. London, England: Zero Carbon Hub.
  • Zhang, C., et al. 2023. “IEA EBC Annex 80 - Dynamic Simulation Guideline for the Performance Testing of Resilient Cooling Strategies: Version 2.” Technical report no. 306, Aalborg University, Denmark.
  • Zhou, X., J. Carmeliet, M. Sulzer, and D. Derome. 2020. “Energy-efficient Mitigation Measures for Improving Indoor Thermal Comfort During Heat Waves.” Applied Energy 278: 115620. https://doi.org/10.1016/j.apenergy.2020.115620.
  • Zinzi, M., S. Agnoli, C. Burattini, and B. Mattoni. 2020. “On the Thermal Response of Buildings Under the Synergic Effect of Heat Waves and Urban Heat Island.” Solar Energy 211: 1270–1282. https://doi.org/10.1016/j.solener.2020.10.050.
  • Żuławińska, J. 2022. “Wet Bulb Calculator.” Omni Calculator, 2022. [online]. Accessed March 17, 2022. www.omnicalculator.com/physics/wet-bulb.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.