1,622
Views
14
CrossRef citations to date
0
Altmetric
Brief Report

Increasing the potency of neutralizing single-domain antibodies by functionalization with a CD11b/CD18 binding domain

, , , , , , , , & show all
Pages 820-828 | Received 26 Mar 2015, Accepted 26 Jun 2015, Published online: 26 Aug 2015

References

  • Colburn WA. Specific antibodies and Fab fragments to alter the pharmacokinetics and reverse the pharmacologic/toxicologic effects of drugs. Drug Metab Rev 1980; 11:223-62; PMID:7011759; http://dx.doi.org/10.3109/03602538008994026
  • Sewall H. Experiments on the Preventive Inoculation of Rattlesnake Venom. J Physiol 1887; 8:203-10; PMID:16991478; http://dx.doi.org/10.1113/jphysiol.1887.sp000253
  • Von Behring E, Kitasato S. Ueber das Sustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch Med Wochenschr 1890; 16:1113-4; http://dx.doi.org/10.1055/s-0029-1207589
  • Adekar SP, Takahashi T, Jones RM, Al-Saleem FH, Ancharski DM, Root MJ, Kapadnis BP, Simpson LL, Dessain SK. Neutralization of botulinum neurotoxin by a human monoclonal antibody specific for the catalytic light chain. PLoS One 2008; 3:e3023; PMID:18714390; http://dx.doi.org/10.1371/journal.pone.0003023
  • Chen Z, Moayeri M, Zhao H, Crown D, Leppla SH, Purcell RH. Potent neutralization of anthrax edema toxin by a humanized monoclonal antibody that competes with calmodulin for edema factor binding. Proc Natl Acad Sci U S A 2009; 106:13487-92; PMID:19651602; http://dx.doi.org/10.1073/pnas.0906581106
  • Krautz-Peterson G, Chapman-Bonofiglio S, Boisvert K, Feng H, Herman IM, Tzipori S, Sheoran AS. Intracellular neutralization of shiga toxin 2 by an a subunit-specific human monoclonal antibody. Infect Immun 2008; 76:1931-9; PMID:18285498; http://dx.doi.org/10.1128/IAI.01282-07
  • Sethuraman N, Stadheim TA. Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 2006; 17:341-6; PMID:16828275; http://dx.doi.org/10.1016/j.copbio.2006.06.010
  • Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R. Naturally occurring antibodies devoid of light chains. Nature 1993; 363:446-8; PMID:8502296; http://dx.doi.org/10.1038/363446a0
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013; 82:775-97; PMID:23495938; http://dx.doi.org/10.1146/annurev-biochem-063011-092449
  • Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, Verrips CT. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 2000; 78:11-21; PMID:10702907; http://dx.doi.org/10.1016/S0168-1656(99)00228-X
  • Harmsen MM, Van Solt CB, Fijten HP, Van Setten MC. Prolonged in vivo residence times of llama single-domain antibody fragments in pigs by binding to porcine immunoglobulins. Vaccine 2005; 23:4926-34; PMID:15992972; http://dx.doi.org/10.1016/j.vaccine.2005.05.017
  • Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, Gobert M, Conrath K, Muyldermans S, De Baetselier P, Revets H. Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 2002; 98:456-62; PMID:11920600; http://dx.doi.org/10.1002/ijc.10212
  • Hmila I, Saerens D, Ben Abderrazek R, Vincke C, Abidi N, Benlasfar Z, Govaert J, El Ayeb M, Bouhaouala-Zahar B, Muyldermans S. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J 2010; 24:3479-89; PMID:20410443; http://dx.doi.org/10.1096/fj.09-148213
  • Harmsen MM, van Solt CB, Fijten HP, van Keulen L, Rosalia RA, Weerdmeester K, Cornelissen AH, De Bruin MG, Eblé PL, Dekker A. Passive immunization of guinea pigs with llama single-domain antibody fragments against foot-and-mouth disease. Vet Microbiol 2007; 120:193-206; PMID:17127019; http://dx.doi.org/10.1016/j.vetmic.2006.10.029
  • Els Conrath K, Lauwereys M, Wyns L, Muyldermans S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 2001; 276:7346-50; PMID:11053416; http://dx.doi.org/10.1074/jbc.M007734200
  • Hmila I, Abdallah RB, Saerens D, Benlasfar Z, Conrath K, Ayeb ME, Muyldermans S, Bouhaouala-Zahar B. VHH, bivalent domains and chimeric Heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI'. Mol Immunol 2008; 45:3847-56; http://dx.doi.org/10.1016/j.molimm.2008.04.011
  • Vance DJ, Tremblay JM, Mantis NJ, Shoemaker CB. Stepwise engineering of heterodimeric single domain camelid VHH antibodies that passively protect mice from ricin toxin. J Biol Chem 2013; 288:36538-47; http://dx.doi.org/10.1074/jbc.M113.519207
  • Harmsen MM, van Solt CB, Fijten HP. Enhancement of toxin- and virus-neutralizing capacity of single-domain antibody fragments by N-glycosylation. Appl Microbiol Biotechnol 2009; 84:1087-94; http://dx.doi.org/10.1007/s00253-009-2029-1
  • Richard G, Meyers AJ, McLean MD, Arbabi-Ghahroudi M, MacKenzie R, Hall JC. In vivo neutralization of α-cobratoxin with high-affinity llama single-domain antibodies (VHHs) and a VHH-Fc antibody. PLoS One 2013; 8:e69495; http://dx.doi.org/10.1371/journal.pone.0069495
  • Coppieters K, Dreier T, Silence K, de Haard H, Lauwereys M, Casteels P, Beirnaert E, Jonckheere H, Van de Wiele C, Staelens L, et al. Formatted anti-tumor necrosis factor α VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 2006; 54:1856-66; http://dx.doi.org/10.1002/art.21827
  • Mukherjee J, Tremblay JM, Leysath CE, Ofori K, Baldwin K, Feng X, Bedenice D, Webb RP, Wright PM, Smith LA, et al. A novel strategy for development of recombinant antitoxin therapeutics tested in a mouse botulism model. PloS one 2012; 7:e29941; http://dx.doi.org/10.1371/journal.pone.0029941
  • van Lookeren Campagne M, Wiesmann C, Brown EJ. Macrophage complement receptors and pathogen clearance. Cell Microbiol 2007; 9:2095-102; http://dx.doi.org/10.1111/j.1462-5822.2007.00981.x
  • Gill DM. Bacterial toxins: a table of lethal amounts. Microbiol Rev 1982; 46:86-94
  • Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol 1997; 34:1121-31; http://dx.doi.org/10.1016/S0161-5890(97)00146-6
  • Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007; 77:13-22; http://dx.doi.org/10.1007/s00253-007-1142-2
  • Saerens D, Kinne J, Bosmans E, Wernery U, Muyldermans S, Conrath K. Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 2004; 279:51965-72; http://dx.doi.org/10.1074/jbc.M409292200
  • Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW. The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 2001; 276:32274-81; http://dx.doi.org/10.1074/jbc.M103285200
  • Peel MM. Measurement of tetanus antitoxin. II. Toxin neutralization. J Biol Stand 1980; 8:191-207; http://dx.doi.org/10.1016/S0092-1157(80)80035-7
  • Tabares-da Rosa S, Rossotti M, Carleiza C, Carrion F, Pritsch O, Ahn KC, Last JA, Hammock BD, González-Sapienza G. Competitive selection from single domain antibody libraries allows isolation of high-affinity antihapten antibodies that are not favored in the llama immune response. Anal Chem 2011; 83:7213-20; http://dx.doi.org/10.1021/ac201824z
  • Rossotti M, Tabares S, Alfaya L, Leizagoyen C, Moron G, Gonzalez-Sapienza G. Streamlined method for parallel identification of single domain antibodies to membrane receptors on whole cells. Biochimica et biophysica acta 2015; 1850(7):1397-404
  • Zarebski LM, Urrutia M, Goldbaum FA. Llama single domain antibodies as a tool for molecular mimicry. J Mol Biol 2005; 349:814-24; PMID:15890359; http://dx.doi.org/10.1016/j.jmb.2005.03.072
  • Beckett D, Kovaleva E, Schatz PJ. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 1999; 8:921-9; PMID:10211839; http://dx.doi.org/10.1110/ps.8.4.921
  • Feeney RE, Mueller JH, Miller PA. Growth requirements of clostridium tetani: III. A “Synthetic” Medium. J Bacteriol 1943; 46:563-71; PMID:16560741

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.