2,176
Views
21
CrossRef citations to date
0
Altmetric
Report

MoFvAb: Modeling the Fv region of antibodies

, , , , , & show all
Pages 838-852 | Received 29 May 2015, Accepted 29 Jun 2015, Published online: 26 Aug 2015

References

  • Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V (D) J recombination. Cell 2002; 109: S45-S55; PMID:11983152; http://dx.doi.org/10.1016/S0092-8674(02)00675-X
  • Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 2004; 18: 1-11; PMID:14724175; http://dx.doi.org/10.1101/gad.1161904
  • Schatz DG, Ji Y. Recombination centres and the orchestration of V (D) J recombination. Nat Rev Immunol 2011; 11: 251-63; PMID:21394103; http://dx.doi.org/10.1038/nri2941
  • Borrebaeck CA. Antibodies in diagnostics – from immunoassays to protein chips. Immunol Today 2000; 21: 379-82; PMID:10916140; http://dx.doi.org/10.1016/S0167-5699(00)01683-2
  • Brekke OH, Sandlie I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov 2003; 2: 52-62; PMID:12509759; http://dx.doi.org/10.1038/nrd984
  • Beck A, Wurch T, Bailly C, Corvaia N. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol 2010; 10: 345-52; PMID:20414207; http://dx.doi.org/10.1038/nri2747
  • Reichert JM. Marketed therapeutic antibodies compendium. mAbs 2012; 4: 413-5; PMID:22531442; http://dx.doi.org/10.4161/mabs.19931
  • Hayden MS, Gilliland LK, Ledbetter JA. Antibody engineering. Curr Opin Immunol 1997; 9: 201-12; PMID:9099794; http://dx.doi.org/10.1016/S0952-7915(97)80136-7
  • Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells 2005; 20: 17-29; PMID:16258237
  • Presta LG. Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Delivery Rev 2006; 58: 640-56; http://dx.doi.org/10.1016/j.addr.2006.01.026
  • Niwa R, Satoh M. The current status and prospects of antibody engineering for therapeutic use: focus on glycoengineering technology. J Pharm Sci 2015; 104(3):930-41; PMID:25583555
  • Kuroda D, Shirai H, Jacobson MP, Nakamura H. Computer-aided antibody design. Protein Eng Des Sel 2012; 25(10):507-21; gzs024; PMID:22661385
  • Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane CM. SAbDab: the structural antibody database. Nucleic Acids Res 2014; 42: D1140-6; PMID:24214988; http://dx.doi.org/10.1093/nar/gkt1043
  • Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 2007; 25: 1171-6; PMID:17891135; http://dx.doi.org/10.1038/nbt1336
  • Pedotti M, Simonelli L, Livoti E, Varani L. Computational docking of antibody-antigen complexes, opportunities and pitfalls illustrated by influenza hemagglutinin. Int J Mol Sci 2011; 12: 226-51; PMID:21339984; http://dx.doi.org/10.3390/ijms12010226
  • Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL. Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 2012; 101: 102-15; PMID:21935950; http://dx.doi.org/10.1002/jps.22758
  • Almagro JC, Beavers MP, Hernandez-Guzman F, Maier J, Shaulsky J, Butenhof K, Labute P, Thorsteinson N, Kelly K, Teplyakov A, Luo J, Sweet R, Gilliland GL. Antibody modeling assessment. Proteins 2011; 79: 3050-66; PMID:21935986; http://dx.doi.org/10.1002/prot.23130
  • Almagro JC, Teplyakov A, Luo J, Sweet RW, Kodangattil S, Hernandez-Guzman F, Gilliland GL. Second antibody modeling assessment (AMA-II). Proteins 2014; 82: 1553-62; PMID:24668560; http://dx.doi.org/10.1002/prot.24567
  • Teplyakov A, Luo J, Obmolova G, Malia TJ, Sweet R, Stanfield RL, Kodangattil S, Almagro JC, Gilliland GL. Antibody modeling assessment II. Structures and models. Proteins 2014; 82: 1563-82; PMID:24633955; http://dx.doi.org/10.1002/prot.24554
  • Tramontano A, Morea V. Assessment of homology-based predictions in CASP5. Proteins 2003; 53: 352-68; PMID:14579324; http://dx.doi.org/10.1002/prot.10543
  • Moult J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struc Biol 2005; 15: 285-9; http://dx.doi.org/10.1016/j.sbi.2005.05.011
  • Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006; 22: 195-201; PMID:16301204; http://dx.doi.org/10.1093/bioinformatics/bti770
  • Padlan EA. Anatomy of the antibody molecule. Mol Immunol 1994; 31: 169-217; PMID:8114766; http://dx.doi.org/10.1016/0161-5890(94)90001-9
  • Wu TT, Kabat EA. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 1970; 132: 211-50; PMID:5508247; http://dx.doi.org/10.1084/jem.132.2.211
  • Mariuzza RA, Phillips SEV, Poljak RJ. The structural basis of antigen-antibody recognition. Annu Rev Biophys Bio 1987; 16: 139-59; http://dx.doi.org/10.1146/annurev.bb.16.060187.001035
  • Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR, et al. Conformations of immunoglobulin hypervariable regions. Nature 1989; 342: 877-83; PMID:2687698; http://dx.doi.org/10.1038/342877a0
  • Martin AC, Thornton JM. Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. J Mol Biol 1996; 263: 800-15; PMID:8947577; http://dx.doi.org/10.1006/jmbi.1996.0617
  • North B, Lehmann A, Dunbrack RL. A new clustering of antibody CDR loop conformations. J Mol Biol 2011; 406: 228-56; PMID:21035459; http://dx.doi.org/10.1016/j.jmb.2010.10.030
  • Weitzner BD, Dunbrack RL, Gray JJ. The Origin of CDR H3 Structural Diversity. Structure 2015; 23(2):302-11; PMID:25579815
  • Abhinandan KR, Martin AC. Analysis and prediction of VH/VL packing in antibodies. Protein Eng Des Sel 2010; 23: 689-97; PMID:20591902; http://dx.doi.org/10.1093/protein/gzq043
  • Chailyan A, Marcatili P, Tramontano A. The association of heavy and light chain variable domains in antibodies: implications for antigen specificity. FEBS J 2011; 278: 2858-66; PMID:21651726; http://dx.doi.org/10.1111/j.1742-4658.2011.08207.x
  • Dunbar J, Fuchs A, Shi J, Deane CM. ABangle: characterising the VH-VL orientation in antibodies. Protein Eng Des Sel 2013; 26: 611-20; PMID:23708320; http://dx.doi.org/10.1093/protein/gzt020
  • Dunbar J, Knapp B, Fuchs A, Shi J, Deane CM. Examining Variable Domain Orientations in Antigen Receptors Gives Insight into TCR-Like Antibody Design. PLoS Comput Biol 2014; 10: e1003852; PMID:25233457; http://dx.doi.org/10.1371/journal.pcbi.1003852
  • Ramachandran GN. Conformation of polypeptides proteins. Adv Protein Chem 1968; 23: 283; PMID:4882249; http://dx.doi.org/10.1016/S0065-3233(08)60402-7
  • Bujotzek A, Dunbar J, Lipsmeier F, Schäfer W, Antes I, Deane CM, Georges G. Prediction of VH-VL domain orientation for antibody variable domain modeling. Proteins 2015; 83(4):681-95; PMID:25641019
  • Weitzner BD, Kuroda D, Marze N, Xu J, Gray JJ. Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins 2014; 82: 1611-23; PMID:24519881; http://dx.doi.org/10.1002/prot.24534
  • Zhu K, Day T, Warshaviak D, Murrett C, Friesner R, Pearlman D. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins 2014; 82: 1646-55; PMID:24619874; http://dx.doi.org/10.1002/prot.24551
  • Maier JK, Labute P. Assessment of fully automated antibody homology modeling protocols in molecular operating environment. Proteins 2014; 82: 1599-610; PMID:24715627; http://dx.doi.org/10.1002/prot.24576
  • Berrondo M, Kaufmann S, Berrondo M. Automated Aufbau of antibody structures from given sequences using Macromoltek's SmrtMolAntibody. Proteins 2014; 82: 1636-45; PMID:24777752; http://dx.doi.org/10.1002/prot.24595
  • Fasnacht M, Butenhof K, Goupil-Lamy A, Hernandez-Guzman F, Huang H, Yan L. Automated antibody structure prediction using Accelrys tools: Results and best practices. Proteins 2014; 82: 1583-98; PMID:24833271; http://dx.doi.org/10.1002/prot.24604
  • Marcatili P, Olimpieri PP, Chailyan A, Tramontano A. Antibody modeling using the Prediction of ImmunoGlobulin Structure (PIGS) web server. Nature Protoc 2014; 9: 2771-83; http://dx.doi.org/10.1038/nprot.2014.189
  • Canutescu AA, Dunbrack RL. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 2003; 12: 963-72; PMID:12717019; http://dx.doi.org/10.1110/ps.0242703
  • Choi Y, Deane CM. FREAD revisited: accurate loop structure prediction using a database search algorithm. Proteins 2010; 78: 1431-40; PMID:20034110
  • Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 1987; 196: 901-17; PMID:3681981; http://dx.doi.org/10.1016/0022-2836(87)90412-8
  • Robin G, Sato Y, Desplancq D, Rochel N, Weiss E, Martineau P. Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes. J Mol Biol 2014; 426: 3729-43; PMID:25174334; http://dx.doi.org/10.1016/j.jmb.2014.08.013
  • Ramaraj T, Angel T, Dratz EA, Jesaitis AJ, Mumey B. Antigen-antibody interface properties: Composition, residue interactions, and features of 53 non-redundant structures. Biochim Biophys Acta Proteins Proteom 2012; 1824: 520-32; http://dx.doi.org/10.1016/j.bbapap.2011.12.007
  • Birtalan S, Zhang Y, Fellouse FA, Shao L, Schaefer G, Sidhu SS. The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 2008; 377: 1518-28; PMID:18336836; http://dx.doi.org/10.1016/j.jmb.2008.01.093
  • Dengl S, Hoffmann E, Grote M, Wagner C, Mundigl O, Georges G, Thorey I, Stubenrauch KG, Bujotzek A, Josel HP, et al. Hapten-directed spontaneous disulfide shuffling: a universal technology for site-directed covalent coupling of payloads to antibodies. FASEB J 2015; 83(4):681-95; fj–14; PMID:25670234
  • Kabat EA, Te Wu T, Perry HM, Gottesman KS, Foeller C. Sequences of proteins of immunological interest. Darby, PA: DIANE Publishing; 1992
  • Honegger A, Plückthun A. Yet another numbering scheme for immunoglobulin variable domains: an automatic modeling and analysis tool. J Mol Biol 2001; 309: 657-70; PMID:11397087; http://dx.doi.org/10.1006/jmbi.2001.4662
  • Kaas Q, Ehrenmann F, Lefranc MP. IG, TR and IgSF, MHC and MhcSF: what do we learn from the IMGT Colliers de Perles? Brief Funct Genomics Proteom 2007; 6: 253-64; http://dx.doi.org/10.1093/bfgp/elm032
  • Accelrys Software Inc. Pipeline Pilot, Release 9.1.0.13, San Diego: 2013
  • Accelrys Software Inc. Discovery Studio Modeling Environment, Release 4.0.0.13259, San Diego: 2013
  • Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. P Natl Acad Sci U S A 1992; 89: 10915-9; http://dx.doi.org/10.1073/pnas.89.22.10915
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-402; PMID:9254694; http://dx.doi.org/10.1093/nar/25.17.3389
  • Oldfield T. Pattern-recognition methods to identify secondary structure within X-ray crystallographic electron-density maps. Acta Crystallogr D 2002; 58: 487-93; PMID:11856835; http://dx.doi.org/10.1107/S0907444902000525
  • Brooks BR, Brooks CL, MacKerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30: 1545-614; PMID:19444816; http://dx.doi.org/10.1002/jcc.21287
  • Im W, Lee MS, Brooks CL. Generalized born model with a simple smoothing function. J Comput Chem 2003; 24: 1691-702; PMID:12964188; http://dx.doi.org/10.1002/jcc.10321
  • Luenberger DG. Introduction to linear and nonlinear programming. Reading, MA: Addison-Wesley Reading; 1973
  • Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem 1990; 94: 8897-909; http://dx.doi.org/10.1021/j100389a010
  • Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22: 1658-9; PMID:16731699; http://dx.doi.org/10.1093/bioinformatics/btl158
  • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28: 3150-2; PMID:23060610; http://dx.doi.org/10.1093/bioinformatics/bts565
  • Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 2009; 66: 12-21; PMID:20057044; http://dx.doi.org/10.1107/S0907444909042073
  • Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D 2010; 66: 213-21; PMID:20124702; http://dx.doi.org/10.1107/S0907444909052925
  • Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC. Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 2003; 50: 437-50; PMID:12557186; http://dx.doi.org/10.1002/prot.10286
  • Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol 1999; 285: 1711-33; PMID:9917407; http://dx.doi.org/10.1006/jmbi.1998.2400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.