3,627
Views
11
CrossRef citations to date
0
Altmetric
Report

Performance metrics for evaluating system suitability in liquid chromatography—Mass spectrometry peptide mass mapping of protein therapeutics and monoclonal antibodies

, &
Pages 1104-1117 | Received 20 Apr 2015, Accepted 13 Jul 2015, Published online: 04 Sep 2015

References

  • Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem 2012; 85:715-36; PMID:23134362; http://dx.doi.org/10.1021/ac3032355
  • Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev 2009; 28:147-76; PMID:18720354; http://dx.doi.org/10.1002/mas.20190
  • Mann M, Kelleher NL. Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A 2008; 105:18132-8; PMID:18818311; http://dx.doi.org/10.1073/pnas.0800788105
  • Smith LM, Kelleher NL. Proteoform: a single term describing protein complexity. Nat Meth 2013; 10:186-7; http://dx.doi.org/10.1038/nmeth.2369
  • Gucinski AC, Boyne MT. Evaluation of intact mass spectrometry for the quantitative analysis of protein therapeutics. Anal Chem 2012; 84:8045-51; PMID:22916992; http://dx.doi.org/10.1021/ac301949j
  • Wang B, Gucinski AC, Keire DA, Buhse LF, Boyne Ii MT. Structural comparison of two anti-CD20 monoclonal antibody drug products using middle-down mass spectrometry. Analyst 2013; 138:3058-65; PMID:23579346; http://dx.doi.org/10.1039/c3an36524g
  • Ni W, Lin M, Salinas P, Savickas P, Wu S-L, Karger B. Complete mapping of a cystine knot and nested disulfides of recombinant human arylsulfatase a by multi-enzyme digestion and LC-MS analysis using CID and ETD. J Am Soc Mass Spectrom 2013; 24:125-33; PMID:23208745; http://dx.doi.org/10.1007/s13361-012-0510-z
  • Wiśniewski JR, Mann M. Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem 2012; 84:2631-7; PMID:22324799; http://dx.doi.org/10.1021/ac300006b
  • Gatlin CL, Eng JK, Cross ST, Detter JC, Yates JR. Automated identification of amino acid sequence variations in proteins by hplc/microspray tandem mass spectrometry. Anal Chem 2000; 72:757-63; PMID:10701260; http://dx.doi.org/10.1021/ac991025n
  • Dick Jr LW, Mahon D, Qiu D, Cheng K-C. Peptide mapping of therapeutic monoclonal antibodies: Improvements for increased speed and fewer artifacts. J Chromatogr B 2009; 877:230-6; http://dx.doi.org/10.1016/j.jchromb.2008.12.009
  • Shah B, Jiang X, Chen L, Zhang Z. LC-MS/MS peptide mapping with automated data processing for routine profiling of N-glycans in immunoglobulins. J Am Soc Mass Spectrom 2014:1-13; PMID:24249043
  • Lowenthal MS, Liang Y, Phinney KW, Stein SE. Quantitative bottom-up proteomics depends on digestion conditions. Anal Chem 2014; 86:551-8; PMID:24294946; http://dx.doi.org/10.1021/ac4027274
  • Bakalarski C, Haas W, Dephoure N, Gygi S. The effects of mass accuracy, data acquisition speed, and search algorithm choice on peptide identification rates in phosphoproteomics. Anal Bioanal Chem 2007; 389:1409-19; PMID:17874083; http://dx.doi.org/10.1007/s00216-007-1563-x
  • Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham A-JL, Keshishian H, et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotech 2009; 27:633-41; http://dx.doi.org/10.1038/nbt.1546
  • Rudnick PA, Clauser KR, Kilpatrick LE, Tchekhovskoi DV, Neta P, Blonder N, Billheimer DD, Blackman RK, Bunk DM, Cardasis HL, et al. Performance metrics for liquid chromatography-tandem mass spectrometry systems in proteomics analyses. Mol Cell Proteomics 2010; 9:225-41; PMID:19837981; http://dx.doi.org/10.1074/mcp.M900223-MCP200
  • Gallien S, Bourmaud A, Domon B. A Simple protocol to routinely assess the uniformity of proteomics analyses. J Proteome Res 2014; 13:2688-95; PMID:24617767; http://dx.doi.org/10.1021/pr4011712
  • Abbatiello SE, Mani DR, Schilling B, MacLean B, Zimmerman LJ, Feng X, Cusack MP, Sedransk N, Hall SC, Addona T, et al. Design, implementation and multisite evaluation of a system suitability protocol for the quantitative assessment of instrument performance in liquid chromatography-multiple reaction monitoring-MS (LC-MRM-MS). Mol Cell Proteomics 2013; 12:2623-39; PMID:23689285; http://dx.doi.org/10.1074/mcp.M112.027078
  • Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, Grant RP, Hoofnagle AN, uumlttenhain R, Koomen JM, et al. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics 2014; 13(3):907-17.
  • Jenkins R, Duggan J, Aubry A-F, Zeng J, Lee J, Cojocaru L, Dufield D, Garofolo F, Kaur S, Schultz G, et al. Recommendations for validation of LC-MS/MS bioanalytical methods for protein biotherapeutics. AAPS J 2015; 17:1-16; PMID:25392238; http://dx.doi.org/10.1208/s12248-014-9685-5
  • Rochat B, Kottelat E, McMullen J. The future key role of LC–high-resolution-MS analyses in clinical laboratories: a focus on quantification. Bioanalysis 2012; 4:2939-58; PMID:23244284; http://dx.doi.org/10.4155/bio.12.243
  • Kalli A, Hess S. Effect of mass spectrometric parameters on peptide and protein identification rates for shotgun proteomic experiments on an LTQ-orbitrap mass analyzer. Proteomics 2012; 12:21-31; PMID:22065615; http://dx.doi.org/10.1002/pmic.201100464
  • Olsen JV, de Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M. Parts per million mass accuracy on an orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 2005; 4:2010-21; PMID:16249172; http://dx.doi.org/10.1074/mcp.T500030-MCP200
  • Makarov A, Denisov E, Lange O, Horning S. Dynamic range of mass accuracy in LTQ orbitrap hybrid mass spectrometer. J Am Soc Mass Spectrom 2006; 17:977-82; PMID:16750636; http://dx.doi.org/10.1016/j.jasms.2006.03.006
  • Zeng K, Geerlof-Vidavisky I, Gucinski A, Jiang X, Boyne M, II. Liquid chromatography-high resolution mass spectrometry for peptide drug quality control. AAPS J 2015; 17:643-51; PMID:25716148; http://dx.doi.org/10.1208/s12248-015-9730-z
  • Annesley TM. Ion suppression in mass spectrometry. Clinical Chemistry 2003; 49:1041-4; PMID:12816898; http://dx.doi.org/10.1373/49.7.1041
  • Trufelli H, Palma P, Famiglini G, Cappiello A. An overview of matrix effects in liquid chromatography–mass spectrometry. Mass Spectrom Rev 2011; 30:491-509; PMID:21500246; http://dx.doi.org/10.1002/mas.20298
  • Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 2012; 11:1709-23; PMID:22962056; http://dx.doi.org/10.1074/mcp.O112.019802
  • Wong RL, Xin B, Olah T. Optimization of Exactive Orbitrap™ acquisition parameters for quantitative bioanalysis. Bioanalysis 2011; 3:863-71; PMID:21510760; http://dx.doi.org/10.4155/bio.11.37
  • Guilhaus M, Selby D, Mlynski V. Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev 2000; 19:65-107; PMID:10795088; http://dx.doi.org/10.1002/(SICI)1098-2787(2000)19:2%3c65::AID-MAS1%3e3.0.CO;2-E
  • Chernushevich IV, Loboda AV, Thomson BA. An introduction to quadrupole–time-of-flight mass spectrometry. J Mass Spectrom 2001; 36:849-65; PMID:11523084; http://dx.doi.org/10.1002/jms.207
  • Cotter RJ. Time-of-flight mass spectrometry for the structural analysis of biological molecules. Anal Chem 1992; 64:1027A-39A; PMID:1443622; http://dx.doi.org/10.1021/ac00045a726
  • Randall S, Cardasis H, Muddiman D. Factorial experimental designs elucidate significant variables affecting data acquisition on a quadrupole orbitrap mass spectrometer. J Am Soc Mass Spectrom 2013; 24:1501-12; PMID:23913023; http://dx.doi.org/10.1007/s13361-013-0693-y
  • U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), and Center for Biologics Evaluation and Research (CBER). Guidance for industry: Analytical procedures and methods validation for drugs and biologics. Silver Spring, MD: FDA; 2015
  • U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) and Center for Veterinary Medicine (CVM). Guidance for industry: Bioanalytical method validation. Silver Spring, MD: FDA; 2001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.