7,816
Views
78
CrossRef citations to date
0
Altmetric
Review

Specific in vivo knockdown of protein function by intrabodies

, &
Pages 1010-1035 | Received 24 Jun 2015, Accepted 20 Jul 2015, Published online: 18 Sep 2015

References

  • Zehner M, Marschall AL, Bos E, Schloetel J-G, Kreer C, Fehrenschild D, Limmer A, Ossendorp F, Lang T, Koster AJ, et al. Endosomal Sec61 mediates antigen translocation in the cytosol for cross-presentation. Immunity 2015; 42:850-63; PMID:25979419; http://dx.doi.org/10.1016/j.immuni.2015.04.008
  • Aires da Silva F, Santa-Marta M, Freitas-Vieira A, Mascarenhas P, Barahona I, Moniz-Pereira J, Gabuzda D, Goncalves J. Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. J Mol Biol 2004; 340:525-42; PMID:15210352; http://dx.doi.org/10.1016/j.jmb.2004.04.062
  • Böldicke T. Blocking translocation of cell surface molecules from the ER to the cell surface by intracellular antibodies targeted to the ER. J Cell Mol Med 2007; 11:54-70; PMID:17367501; http://dx.doi.org/10.1111/j.1582-4934.2007.00002.x
  • Kirschning CJ, Dreher S, Maass B, Fichte S, Schade J, Koster M, Noack A, Lindenmaier W, Wagner H, Böldicke T. Generation of anti-TLR2 intrabody mediating inhibition of macrophage surface TLR2 expression and TLR2-driven cell activation. BMC Biotechnol 2010; 10:31; PMID:20388199; http://dx.doi.org/10.1186/1472-6750-10-31
  • Reimer E, Somplatzki S, Zegenhagen D, Hanel S, Fels A, Bollhorst T, Hovest LG, Bauer S, Kirschning CJ, Boldicke T. Molecular cloning and characterization of a novel anti-TLR9 intrabody. Cell Mol Biol Lett 2013; 18:433-46; PMID:23893288; http://dx.doi.org/10.2478/s11658-013-0098-8
  • Serruys B, Van Houtte F, Farhoudi-Moghadam A, Leroux-Roels G, Vanlandschoot P. Production, characterization and in vitro testing of HBcAg-specific VHH intrabodies. J Gen Virol 2010; 91:643-52; PMID:19889923; http://dx.doi.org/10.1099/vir.0.016063-0
  • Colby DW, Chu Y, Cassady JP, Duennwald M, Zazulak H, Webster JM, Messer A, Lindquist S, Ingram VM, Wittrup KD. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci U S A 2004; 101:17616-21; PMID:15598740; http://dx.doi.org/10.1073/pnas.0408134101
  • Colby DW, Garg P, Holden T, Chao G, Webster JM, Messer A, Ingram VM, Wittrup KD. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J Mol Biol 2004; 342:901-12; PMID:15342245; http://dx.doi.org/10.1016/j.jmb.2004.07.054
  • Emadi S, Barkhordarian H, Wang MS, Schulz P, Sierks MR. Isolation of a human single chain antibody fragment against oligomeric α-synuclein that inhibits aggregation and prevents α-synuclein-induced toxicity. J Mol Biol 2007; 368:1132-44; PMID:17391701; http://dx.doi.org/10.1016/j.jmb.2007.02.089
  • Meli G, Visintin M, Cannistraci I, Cattaneo A. Direct in vivo intracellular selection of conformation-sensitive antibody domains targeting Alzheimer amyloid-β oligomers. J Mol Biol 2009; 387:584-606; PMID:19361429; http://dx.doi.org/10.1016/j.jmb.2009.01.061
  • Hyland S, Beerli RR, Barbas CF, Hynes NE, Wels W. Generation and functional characterization of intracellular antibodies interacting with the kinase domain of human EGF receptor. Oncogene 2003; 22:1557-67; PMID:12629519; http://dx.doi.org/10.1038/sj.onc.1206299
  • Paz K, Brennan LA, Iacolina M, Doody J, Hadari YR, Zhu Z. Human single-domain neutralizing intrabodies directed against Etk kinase: a novel approach to impair cellular transformation. Mol Cancer Ther 2005; 4:1801-9; PMID:16276002; http://dx.doi.org/10.1158/1535-7163.MCT-05-0174
  • Tse E, Lobato MN, Forster A, Tanaka T, Chung GT, Rabbitts TH. Intracellular antibody capture technology: application to selection of intracellular antibodies recognising the BCR-ABL oncogenic protein. J Mol Biol 2002; 317:85-94; PMID:11916380; http://dx.doi.org/10.1006/jmbi.2002.5403
  • Van Impe K, Bethuyne J, Cool S, Impens F, Ruano-Gallego D, De Wever O, Vanloo B, Van Troys M, Lambein K, Boucherie C, et al. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Res 2013; 15:R116; PMID:24330716; http://dx.doi.org/10.1186/bcr3585
  • Biocca S, Di Luzio A, Werge T, Cattaneo A. Intracellular immunization: Expression of antibody domains in the cytoplasm and in the nucleus of mammalian cells. Cytotechnology 1991; 5:49-50; PMID:AMBIGUOUS; http://dx.doi.org/10.1007/BF00736806
  • Biocca S, Neuberger MS, Cattaneo A. Expression and targeting of intracellular antibodies in mammalian cells. EMBO J 1990; 9:101-8; PMID:2153072
  • Carlson JR. A new means of inducibly inactivating a cellular protein. Mol Cell Biol 1988; 8:2638-46; PMID:3136320
  • Lobato MN, Rabbitts TH. Intracellular antibodies and challenges facing their use as therapeutic agents. Trends Mol Med 2003; 9:390-6; PMID:13129705; http://dx.doi.org/10.1016/S1471-4914(03)00163-1
  • Stocks M. Intrabodies as drug discovery tools and therapeutics. Curr Opin Chem Biol 2005; 9:359-65; PMID:15979379; http://dx.doi.org/10.1016/j.cbpa.2005.06.003
  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 1993; 366:469-72; PMID:8247156; http://dx.doi.org/10.1038/366469a0
  • Wheeler YY, Chen SY, Sane DC. Intrabody and intrakine strategies for molecular therapy. Mol Ther 2003; 8:355-66; PMID:12946308; http://dx.doi.org/10.1016/S1525-0016(03)00183-7
  • Freund G, Sibler AP, Desplancq D, Oulad-Abdelghani M, Vigneron M, Gannon J, Van Regenmortel MH, Weiss E. Targeting endogenous nuclear antigens by electrotransfer of monoclonal antibodies in living cells. mAbs 2013; 5:518-22; PMID:23765067; http://dx.doi.org/10.4161/mabs.25084
  • Marschall AL, Frenzel A, Schirrmann T, Schüngel M, Dübel S. Targeting antibodies to the cytoplasm. mAbs 2011; 3:3-16; PMID:21099369; http://dx.doi.org/10.4161/mabs.3.1.14110
  • Marschall AL, Zhang C, Frenzel A, Schirrmann T, Hust M, Perez F, Dübel S. Delivery of antibodies to the cytosol: debunking the myths. mAbs 2014; 6:943-56; PMID:24848507; http://dx.doi.org/10.4161/mabs.29268
  • Biocca S, Ruberti F, Tafani M, Pierandrei-Amaldi P, Cattaneo A. Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Biotechnology (N Y) 1995; 13:1110-5; PMID:9636285; http://dx.doi.org/10.1038/nbt1095-1110
  • Wörn A, Plückthun A. Stability engineering of antibody single-chain Fv fragments. J Mol Biol 2001; 305:989-1010; PMID:11162109; http://dx.doi.org/10.1006/jmbi.2000.4265
  • Vascotto F, Campagna M, Visintin M, Cattaneo A, Burrone OR. Effects of intrabodies specific for rotavirus NSP5 during the virus replicative cycle. J Gen Virol 2004; 85:3285-90; PMID:15483242; http://dx.doi.org/10.1099/vir.0.80075-0
  • Dong J, Thompson AA, Fan Y, Lou J, Conrad F, Ho M, Pires-Alves M, Wilson BA, Stevens RC, Marks JD. A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic α-exosite binding region. J Mol Biol 2010; 397:1106-18; PMID:20138889; http://dx.doi.org/10.1016/j.jmb.2010.01.070
  • Tremblay JM, Kuo CL, Abeijon C, Sepulveda J, Oyler G, Hu X, Jin MM, Shoemaker CB. Camelid single domain antibodies (VHHs) as neuronal cell intrabody binding agents and inhibitors of Clostridium botulinum neurotoxin (BoNT) proteases. Toxicon 2010; 56:990-8; PMID:20637220; http://dx.doi.org/10.1016/j.toxicon.2010.07.003
  • Gueorguieva D, Li S, Walsh N, Mukerji A, Tanha J, Pandey S. Identification of single-domain, Bax-specific intrabodies that confer resistance to mammalian cells against oxidative-stress-induced apoptosis. FASEB J 2006; 20:2636-8; PMID:17060401; http://dx.doi.org/10.1096/fj.06-6306fje
  • Kaiser PD, Maier J, Traenkle B, Emele F, Rothbauer U. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. Biochim Biophys Acta 2014; 1844:1933-42; PMID:24792387; http://dx.doi.org/10.1016/j.bbapap.2014.04.019
  • Rinaldi AS, Freund G, Desplancq D, Sibler AP, Baltzinger M, Rochel N, Mely Y, Didier P, Weiss E. The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells. Exp Cell Res 2013; 319:838-49; PMID:23353833; http://dx.doi.org/10.1016/j.yexcr.2013.01.011
  • Visintin M, Settanni G, Maritan A, Graziosi S, Marks JD, Cattaneo A. The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J Mol Biol 2002; 317:73-83; PMID:11916379; http://dx.doi.org/10.1006/jmbi.2002.5392
  • Christ D, Famm K, Winter G. Repertoires of aggregation-resistant human antibody domains. Protein Eng Des Sel 2007; 20:413-6; http://dx.doi.org/10.1093/protein/gzm037
  • Kim DY, Hussack G, Kandalaft H, Tanha J. Mutational approaches to improve the biophysical properties of human single-domain antibodies. Biochim Biophys Acta 2014; 1844:1983-2001; PMID:25065345; http://dx.doi.org/10.1016/j.bbapap.2014.07.008
  • Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013; 82:775-97; PMID:23495938; http://dx.doi.org/10.1146/annurev-biochem-063011-092449
  • Cassimeris L, Guglielmi L, Denis V, Larroque C, Martineau P. Specific in vivo labeling of tyrosinated α-tubulin and measurement of microtubule dynamics using a GFP tagged, cytoplasmically expressed recombinant antibody. PloS one 2013; 8:e59812; PMID:23555790; http://dx.doi.org/10.1371/journal.pone.0059812
  • Czajkowsky DM, Hu J, Shao Z, Pleass RJ. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 2012; 4:1015-28; PMID:22837174; http://dx.doi.org/10.1002/emmm.201201379
  • Guglielmi L, Denis V, Vezzio-Vie N, Bec N, Dariavach P, Larroque C, Martineau P. Selection for intrabody solubility in mammalian cells using GFP fusions. Protein Eng Des Sel 2011; 24:873-81; http://dx.doi.org/10.1093/protein/gzr049
  • Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 2006; 24:79-88; PMID:16369541; http://dx.doi.org/10.1038/nbt1172
  • Shaki-Loewenstein S, Zfania R, Hyland S, Wels WS, Benhar I. A universal strategy for stable intracellular antibodies. J Immunol Methods 2005; 303:19-39; PMID:16045924; http://dx.doi.org/10.1016/j.jim.2005.05.004
  • Strube RW, Chen SY. Enhanced intracellular stability of sFv-Fc fusion intrabodies. Methods 2004; 34:179-83; PMID:15312671; http://dx.doi.org/10.1016/j.ymeth.2004.04.003
  • Donini M, Morea V, Desiderio A, Pashkoulov D, Villani ME, Tramontano A, Benvenuto E. Engineering stable cytoplasmic intrabodies with designed specificity. J Mol Biol 2003; 330:323-32; PMID:12823971; http://dx.doi.org/10.1016/S0022-2836(03)00530-8
  • Mandrup OA, Friis NA, Lykkemark S, Just J, Kristensen P. A novel heavy domain antibody library with functionally optimized complementarity determining regions. PloS One 2013; 8:e76834; PMID:24116173; http://dx.doi.org/10.1371/journal.pone.0076834
  • Philibert P, Stoessel A, Wang W, Sibler AP, Bec N, Larroque C, Saven JG, Courtete J, Weiss E, Martineau P. A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm. BMC Biotechnol 2007; 7:81; PMID:18034894; http://dx.doi.org/10.1186/1472-6750-7-81
  • Wörn A, Auf der Maur A, Escher D, Honegger A, Barberis A, Plückthun A. Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J Biol Chem 2000; 275:2795-803; PMID:10644744; http://dx.doi.org/10.1074/jbc.275.4.2795
  • Proba K, Wörn A, Honegger A, Plückthun A. Antibody scFv fragments without disulfide bonds made by molecular evolution. J Mol Biol 1998; 275:245-53; PMID:9466907; http://dx.doi.org/10.1006/jmbi.1997.1457
  • Kakimoto S, Tanabe T, Azuma H, Nagasaki T. Enhanced internalization and endosomal escape of dual-functionalized poly(ethyleneimine)s polyplex with diphtheria toxin T and R domains. Biomed Pharmacother 2010; 64:296-301; PMID:20347568; http://dx.doi.org/10.1016/j.biopha.2009.06.017
  • Qian Z, LaRochelle JR, Jiang B, Lian W, Hard RL, Selner NG, Luechapanichkul R, Barrios AM, Pei D. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Biochemistry 2014; 53:4034-46; PMID:24896852; http://dx.doi.org/10.1021/bi5004102
  • van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228; PMID:16126486; http://dx.doi.org/10.1080/10409230591008161
  • Hardwick KG, Lewis MJ, Semenza J, Dean N, Pelham HR. ERD1, a yeast gene required for the retention of luminal endoplasmic reticulum proteins, affects glycoprotein processing in the Golgi apparatus. EMBO J 1990; 9:623-30; PMID:2178921
  • Lewis MJ, Pelham HR. Ligand-induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 1992; 68:353-64; PMID:1310258; http://dx.doi.org/10.1016/0092-8674(92)90476-S
  • Donoso G, Herzog V, Schmitz A. Misfolded BiP is degraded by a proteasome-independent endoplasmic-reticulum-associated degradation pathway. Biochem J 2005; 387:897-903; PMID:15610068; http://dx.doi.org/10.1042/BJ20041312
  • Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nat Cell Biol 2005; 7:766-72; PMID:16056268; http://dx.doi.org/10.1038/ncb0805-766
  • Schmitz A, Schneider A, Kummer MP, Herzog V. Endoplasmic reticulum-localized amyloid β-peptide is degraded in the cytosol by two distinct degradation pathways. Traffic 2004; 5:89-101; PMID:14690498; http://dx.doi.org/10.1111/j.1600-0854.2004.00159.x
  • Böldicke T, Somplatzki S, Sergeev G, Mueller PP. Functional inhibition of transitory proteins by intrabody-mediated retention in the endoplasmatic reticulum. Methods 2012; 56:338-50; PMID:22037249; http://dx.doi.org/10.1016/j.ymeth.2011.10.008
  • Dübel S, Breitling F, Fuchs P, Zewe M, Gotter S, Welschof M, Moldenhauer G, Little M. Isolation of IgG antibody Fv-DNA from various mouse and rat hybridoma cell lines using the polymerase chain reaction with a simple set of primers. J Immunol Methods 1994; 175:89-95; PMID:7930642; http://dx.doi.org/10.1016/0022-1759(94)90334-4
  • Hust M, Frenzel A, Tomszak F, Kügler J, Dübel S. Antibody Phage Display. Handbook of Therapeutic Antibodies, 2nd ed. Weinheim, Germany: Wiley-VCH; 2014; 43-76.
  • Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M. A surface expression vector for antibody screening. Gene 1991; 104:147-53; PMID:1916287; http://dx.doi.org/10.1016/0378-1119(91)90244-6
  • Bradbury AR, Sidhu S, Dubel S, McCafferty J. Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 2011; 29:245-54; PMID:21390033; http://dx.doi.org/10.1038/nbt.1791
  • Beerli RR, Bauer M, Buser RB, Gwerder M, Muntwiler S, Maurer P, Saudan P, Bachmann MF. Isolation of human monoclonal antibodies by mammalian cell display. Proc Natl Acad Sci U S A 2008; 105:14336-41; PMID:18812621; http://dx.doi.org/10.1073/pnas.0805942105
  • Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997; 15:553-7; PMID:9181578; http://dx.doi.org/10.1038/nbt0697-553
  • Samuelson P, Gunneriusson E, Nygren PA, Stahl S. Display of proteins on bacteria. J Biotechnol 2002; 96:129-54; PMID:12039531; http://dx.doi.org/10.1016/S0168-1656(02)00043-3
  • Zhao XL, Chen WQ, Yang ZH, Li JM, Zhang SJ, Tian LF. Selection and affinity maturation of human antibodies against rabies virus from a scFv gene library using ribosome display. J Biotechnol 2009; 144:253-8; PMID:19818816; http://dx.doi.org/10.1016/j.jbiotec.2009.09.022
  • Colwill K, Renewable Protein Binder Working G, Graslund S. A roadmap to generate renewable protein binders to the human proteome. Nat Methods 2011; 8:551-8; PMID:21572409; http://dx.doi.org/10.1038/nmeth.1607
  • Schofield DJ, Pope AR, Clementel V, Buckell J, Chapple S, Clarke KF, Conquer JS, Crofts AM, Crowther SR, Dyson MR, et al. Application of phage display to high throughput antibody generation and characterization. Genome Biol 2007; 8:R254; PMID:18047641; http://dx.doi.org/10.1186/gb-2007-8-11-r254
  • Sidhu SS. Antibodies for all: The case for genome-wide affinity reagents. FEBS Lett 2012; 586:2778-9; PMID:22664378; http://dx.doi.org/10.1016/j.febslet.2012.05.044
  • Hust M, Frenzel A, Schirrmann T, Dübel S. Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 2014; 1101:305-20; PMID:24233787; http://dx.doi.org/10.1007/978-1-62703-721-1_14
  • Mersmann M, Meier D, Mersmann J, Helmsing S, Nilsson P, Gräslund S, Colwill K, Hust M, Dübel S. Towards proteome scale antibody selections using phage display. N Biotechnol 2010; 27:118-28; PMID:19883803; http://dx.doi.org/10.1016/j.nbt.2009.10.007
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol 2005; 23:1105-16; PMID:16151404; http://dx.doi.org/10.1038/nbt1126
  • Hust M, Frenzel A, Meyer T, Schirrmann T, Dübel S. Construction of human naive antibody gene libraries. Methods Mol Biol 2012; 907:85-107; PMID:22907347; http://dx.doi.org/10.1007/978-1-61779-974-7_5
  • Hayashi N, Welschof M, Zewe M, Braunagel M, Dübel S, Breitling F, Little M. Simultaneous mutagenesis of antibody CDR regions by overlap extension and PCR. Biotechniques 1994; 17:310, 2, 4-5.
  • Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, et al. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 2008; 376:1182-200; PMID:18191144; http://dx.doi.org/10.1016/j.jmb.2007.12.018
  • Hoet RM, Cohen EH, Kent RB, Rookey K, Schoonbroodt S, Hogan S, Rem L, Frans N, Daukandt M, Pieters H, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 2005; 23:344-8; PMID:15723048; http://dx.doi.org/10.1038/nbt1067
  • Zhang C, Helmsing S, Zagrebelsky M, Schirrmann T, Marschall AL, Schüngel M, Korte M, Hust M, Dübel S. Suppression of p75 neurotrophin receptor surface expression with intrabodies influences Bcl-xL mRNA expression and neurite outgrowth in PC12 cells. PloS One 2012; 7:e30684; PMID:22292018; http://dx.doi.org/10.1371/journal.pone.0030684
  • Nam CH, Moutel S, Teillaud JL. Generation of murine scFv intrabodies from B-cell hybridomas. Methods Mol Biol 2002; 193:301-27; PMID:12325520
  • Pope AR, Embleton MJ, Mernaugh R. Construction and use of antibody gene repertoires. In: Mc Cafferty J, Hoogenboom HR, Chiswell DJ (Eds.), Antibody engineering: A practical approach. New York, NY: Oxford University Press; 1996. p. 1–40.
  • Toleikis L, Frenzel A. Cloning single-chain antibody fragments (ScFv) from hyrbidoma cells. Methods Mol Biol 2012; 907:59-71; PMID:22907345; http://dx.doi.org/10.1007/978-1-61779-974-7_3
  • Ruberti F, Cattaneo A, Bradbury A. The use of the RACE method to clone hybridoma cDNA when V region primers fail. J Immunol Methods 1994; 173:33-9; PMID:8034983; http://dx.doi.org/10.1016/0022-1759(94)90280-1
  • Ladiges W, Osman GE. Molecular characterization of immunoglobulin genes. In: Howard GC, Bethell DR (Eds.), Basic Methods in Antibody Production and Characterization. Boca Raton, FL: CRC Press Ltd; 2000:169-91.
  • Persic L, Righi M, Roberts A, Hoogenboom HR, Cattaneo A, Bradbury A. Targeting vectors for intracellular immunisation. Gene 1997; 187:1-8; PMID:9073060; http://dx.doi.org/10.1016/S0378-1119(96)00627-0
  • Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 1988; 85:5879-83; PMID:3045807; http://dx.doi.org/10.1073/pnas.85.16.5879
  • Levin R, Mhashilkar AM, Dorfman T, Bukovsky A, Zani C, Bagley J, Hinkula J, Niedrig M, Albert J, Wahren B, et al. Inhibition of early and late events of the HIV-1 replication cycle by cytoplasmic Fab intrabodies against the matrix protein, p17. Mol Med 1997; 3:96-110; PMID:9085253
  • Reinman M, Jantti J, Alfthan K, Keranen S, Soderlund H, Takkinen K. Functional inactivation of the conserved Sem1p in yeast by intrabodies. Yeast 2003; 20:1071-84; PMID:12961755; http://dx.doi.org/10.1002/yea.1027
  • Hust M, Jostock T, Menzel C, Voedisch B, Mohr A, Brenneis M, Kirsch MI, Meier D, Dübel S. Single chain Fab (scFab) fragment. BMC Biotechnol 2007; 7:14; PMID:17346344; http://dx.doi.org/10.1186/1472-6750-7-14
  • Kontermann RE. Dual targeting strategies with bispecific antibodies. mAbs 2012; 4:182-97; PMID:22453100; http://dx.doi.org/10.4161/mabs.4.2.19000
  • Jendreyko N, Popkov M, Beerli RR, Chung J, McGavern DB, Rader C, Barbas CF, 3rd. Intradiabodies, bispecific, tetravalent antibodies for the simultaneous functional knockout of two cell surface receptors. J Biol Chem 2003; 278:47812-9; PMID:12947084; http://dx.doi.org/10.1074/jbc.M307002200
  • Jendreyko N, Popkov M, Rader C, Barbas CF, 3rd. Phenotypic knockout of VEGF-R2 and Tie-2 with an intradiabody reduces tumor growth and angiogenesis in vivo. Proc Natl Acad Sci U S A 2005; 102:8293-8; PMID:15928093; http://dx.doi.org/10.1073/pnas.0503168102
  • Müller N, Hartmann C, Genssler S, Koch J, Kinner A, Grez M, Wels WS. A bispecific transmembrane antibody simultaneously targeting intra- and extracellular epitopes of the epidermal growth factor receptor inhibits receptor activation and tumor cell growth. Int J Cancer 2014; 134:2547-59; PMID:24243620; http://dx.doi.org/10.1002/ijc.28585
  • Kim DS, Song HN, Nam HJ, Kim SG, Park YS, Park JC, Woo EJ, Lim HK. Directed evolution of human heavy chain variable domain (VH) using in vivo protein fitness filter. PloS One 2014; 9:e98178; PMID:24892548; http://dx.doi.org/10.1371/journal.pone.0098178
  • Kim DY, To R, Kandalaft H, Ding W, van Faassen H, Luo Y, Schrag JD, St-Amant N, Hefford M, Hirama T, et al. Antibody light chain variable domains and their biophysically improved versions for human immunotherapy. mAbs 2014; 6:219-35; PMID:24423624; http://dx.doi.org/10.4161/mabs.26844
  • Biocca S, Pierandrei-Amaldi P, Cattaneo A. Intracellular expression of anti-p21ras single chain Fv fragments inhibits meiotic maturation of xenopus oocytes. Biochem Biophys Res Commun 1993; 197:422-7; PMID:8267576; http://dx.doi.org/10.1006/bbrc.1993.2496
  • Burke B, Warren G. Microinjection of mRNA coding for an anti-Golgi antibody inhibits intracellular transport of a viral membrane protein. Cell 1984; 36:847-56; PMID:6323023; http://dx.doi.org/10.1016/0092-8674(84)90034-5
  • Valle G, Jones EA, Colman A. Anti-ovalbumin monoclonal antibodies interact with their antigen in internal membranes of Xenopus oocytes. Nature 1982; 300:71-4; PMID:7133132; http://dx.doi.org/10.1038/300071a0
  • Kvam E, Nannenga BL, Wang MS, Jia Z, Sierks MR, Messer A. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PloS one 2009; 4:e5727; PMID:19492089; http://dx.doi.org/10.1371/journal.pone.0005727
  • Paoletti F, Malerba F, Konarev PV, Visintin M, Scardigli R, Fasulo L, Lamba D, Svergun DI, Cattaneo A. Direct intracellular selection and biochemical characterization of a recombinant anti-proNGF single chain antibody fragment. Arch Biochem Biophys 2012; 522:26-36; PMID:22516657; http://dx.doi.org/10.1016/j.abb.2012.04.003
  • Zacchi P, Dreosti E, Visintin M, Moretto-Zita M, Marchionni I, Cannistraci I, Kasap Z, Betz H, Cattaneo A, Cherubini E. Gephyrin selective intrabodies as a new strategy for studying inhibitory receptor clustering. J Mol Neurosci 2008; 34:141-8; PMID:18008186; http://dx.doi.org/10.1007/s12031-007-9018-6
  • Dauvillier S, Merida P, Visintin M, Cattaneo A, Bonnerot C, Dariavach P. Intracellular single-chain variable fragments directed to the Src homology 2 domains of Syk partially inhibit Fc epsilon RI signaling in the RBL-2H3 cell line. J Immunol 2002; 169:2274-83; http://dx.doi.org/10.4049/jimmunol.169.5.2274
  • Tse E, Rabbitts TH. Intracellular antibody-caspase-mediated cell killing: an approach for application in cancer therapy. Proc Natl Acad Sci U S A 2000; 97:12266-71; PMID:11050246; http://dx.doi.org/10.1073/pnas.97.22.12266
  • Staus DP, Wingler LM, Strachan RT, Rasmussen SG, Pardon E, Ahn S, Steyaert J, Kobilka BK, Lefkowitz RJ. Regulation of beta2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol Pharmacol 2014; 85:472-81; PMID:24319111; http://dx.doi.org/10.1124/mol.113.089516
  • Chiusaroli R, Visentini M, Galimberti C, Casseler C, Mennuni L, Covaceuszach S, Lanza M, Ugolini G, Caselli G, Rovati LC, et al. Targeting of ADAMTS5s ancillary domain with the recombinant mAb CRB0017 ameliorates disease progression in a spontaneous murine model of osteoarthritis. Osteoarthritis Cartilage 2013; 21:1807-10; PMID:23954517; http://dx.doi.org/10.1016/j.joca.2013.08.015
  • Liu Y, Sun L, Yu P, Li A, Li C, Tang Q, Li D, Liang M. Viral suppression function of intracellular antibody against C-terminal domain of rabies virus phosphoprotein. Acta Biochim Biophys Sin 2015; http://dx.doi.org/10.1093/abbs/gmv060
  • Auf der Maur A, Tissot K, Barberis A. Antigen-independent selection of intracellular stable antibody frameworks. Methods 2004; 34:215-24; PMID:15312674; http://dx.doi.org/10.1016/j.ymeth.2004.04.004
  • Visintin M, Meli GA, Cannistraci I, Cattaneo A. Intracellular antibodies for proteomics. J Immunol Methods 2004; 290:135-53; PMID:15261577; http://dx.doi.org/10.1016/j.jim.2004.04.014
  • Visintin M, Melchionna T, Cannistraci I, Cattaneo A. In vivo selection of intrabodies specifically targeting protein-protein interactions: a general platform for an “undruggable” class of disease targets. J Biotechnol 2008; 135:1-15; PMID:18395925; http://dx.doi.org/10.1016/j.jbiotec.2008.02.012
  • Fisher AC, DeLisa MP. Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery. J Mol Biol 2009; 385:299-311; PMID:18992254; http://dx.doi.org/10.1016/j.jmb.2008.10.051
  • Karlsson AJ, Lim HK, Xu H, Rocco MA, Bratkowski MA, Ke A, DeLisa MP. Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins. J Mol Biol 2012; 416:94-107; PMID:22197376; http://dx.doi.org/10.1016/j.jmb.2011.12.021
  • Waraho D, DeLisa MP. Versatile selection technology for intracellular protein-protein interactions mediated by a unique bacterial hitchhiker transport mechanism. Proc Natl Acad Sci U S A 2009; 106:3692-7; PMID:19234130; http://dx.doi.org/10.1073/pnas.0704048106
  • Waraho-Zhmayev D, Meksiriporn B, Portnoff AD, DeLisa M. Optimizing recombinant antibodies for intracellular function using hitchhiker-mediated survival selection. Protein Eng Des Sel 2014; 27: 351-358; PMID:25225416; http://dx.doi.org/10.1093/protein/gzu038
  • Sacchetti A, Cappetti V, Marra P, Dell'Arciprete R, El Sewedy T, Crescenzi C, Alberti S. Green fluorescent protein variants fold differentially in prokaryotic and eukaryotic cells. J Cell Biochem Suppl 2001; Suppl 36:117-28; PMID:11455577; http://dx.doi.org/10.1002/jcb.1091
  • Cohen PA, Mani JC, Lane DP. Characterization of a new intrabody directed against the N-terminal region of human p53. Oncogene 1998; 17:2445-56; PMID:9824155; http://dx.doi.org/10.1038/sj.onc.1202190
  • Jannot CB, Hynes NE. Characterization of scFv-421, a single-chain antibody targeted to p53. Biochem Biophys Res Commun 1997; 230:242-6; PMID:9016757; http://dx.doi.org/10.1006/bbrc.1996.5930
  • Zheng L, Baumann U, Reymond JL. Production of a functional catalytic antibody ScFv-NusA fusion protein in bacterial cytoplasm. J Biochem 2003; 133:577-81; PMID:12801908; http://dx.doi.org/10.1093/jb/mvg074
  • Caron de Fromentel C, Gruel N, Venot C, Debussche L, Conseiller E, Dureuil C, Teillaud JL, Tocque B, Bracco L. Restoration of transcriptional activity of p53 mutants in human tumour cells by intracellular expression of anti-p53 single chain Fv fragments. Oncogene 1999; 18:551-7; PMID:9927212; http://dx.doi.org/10.1038/sj.onc.1202338
  • Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986; 234:364-8; PMID:2876518; http://dx.doi.org/10.1126/science.2876518
  • Joshi SN, Butler DC, Messer A. Fusion to a highly charged proteasomal retargeting sequence increases soluble cytoplasmic expression and efficacy of diverse anti-synuclein intrabodies. mAbs 2012; 4:686-93; PMID:22929188; http://dx.doi.org/10.4161/mabs.21696
  • Butler DC, Messer A. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PloS One 2011; 6:e29199; PMID:22216210; http://dx.doi.org/10.1371/journal.pone.0029199
  • Raran-Kurussi S, Waugh DS. The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PloS One 2012; 7:e49589; PMID:23166722; http://dx.doi.org/10.1371/journal.pone.0049589
  • Nallamsetty S, Waugh DS. Mutations that alter the equilibrium between open and closed conformations of Escherichia coli maltose-binding protein impede its ability to enhance the solubility of passenger proteins. Biochem Biophys Res Commun 2007; 364:639-44; PMID:17964542; http://dx.doi.org/10.1016/j.bbrc.2007.10.060
  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321:522-5; PMID:3713831; http://dx.doi.org/10.1038/321522a0
  • Mazuc E, Guglielmi L, Bec N, Parez V, Hahn CS, Mollevi C, Parrinello H, Desvignes JP, Larroque C, Jupp R, et al. In-cell intrabody selection from a diverse human library identifies C12orf4 protein as a new player in rodent mast cell degranulation. PloS One 2014; 9:e104998; PMID:25122211; http://dx.doi.org/10.1371/journal.pone.0104998
  • Doyle PJ, Saeed H, Hermans A, Gleddie SC, Hussack G, Arbabi-Ghahroudi M, Seguin C, Savard ME, Mackenzie CR, Hall JC. Intracellular expression of a single domain antibody reduces cytotoxicity of 15-acetyldeoxynivalenol in yeast. J Biol Chem 2009; 284:35029-39; PMID:19783651; http://dx.doi.org/10.1074/jbc.M109.045047
  • McGonigal K, Tanha J, Palazov E, Li S, Gueorguieva-Owens D, Pandey S. Isolation and functional characterization of single domain antibody modulators of Caspase-3 and apoptosis. Appl Biochem Biotechnol 2009; 157:226-36; PMID:18553063; http://dx.doi.org/10.1007/s12010-008-8266-4
  • Verheesen P, de Kluijver A, van Koningsbruggen S, de Brij M, de Haard HJ, van Ommen GJ, van der Maarel SM, Verrips CT. Prevention of oculopharyngeal muscular dystrophy-associated aggregation of nuclear polyA-binding protein with a single-domain intracellular antibody. Hum Mol Genet 2006; 15:105-11; PMID:16319127; http://dx.doi.org/10.1093/hmg/ddi432
  • Newnham LE, Wright MJ, Holdsworth G, Kostarelos K, Robinson MK, Rabbitts TH, Lawson AD. Functional inhibition of β-catenin-mediatedWnt signaling by intracellular VHHantibodies. mAbs 2015; 7:180-91; PMID:25524068; http://dx.doi.org/10.4161/19420862.2015.989023
  • Jespers L, Schon O, Famm K, Winter G. Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 2004; 22:1161-5; PMID:15300256; http://dx.doi.org/10.1038/nbt1000
  • Barthelemy PA, Raab H, Appleton BA, Bond CJ, Wu P, Wiesmann C, Sidhu SS. Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J Biol Chem 2008; 283:3639-54; PMID:18045863; http://dx.doi.org/10.1074/jbc.M708536200
  • Yasui H, Ito W, Kurosawa Y. Effects of substitutions of amino acids on the thermal stability of the Fv fragments of antibodies. FEBS Lett 1994; 353:143-6; PMID:7926039; http://dx.doi.org/10.1016/0014-5793(94)01027-7
  • Jager M, Plückthun A. Folding and assembly of an antibody Fv fragment, a heterodimer stabilized by antigen. J Mol Biol 1999; 285:2005-19; PMID:9925781; http://dx.doi.org/10.1006/jmbi.1998.2425
  • Dübel S, Stoevesandt O, Taussig MJ, Hust M. Generating recombinant antibodies to the complete human proteome. Trends Biotechnol 2010; 28:333-9; PMID:20538360; http://dx.doi.org/10.1016/j.tibtech.2010.05.001
  • Popkov M, Jendreyko N, McGavern DB, Rader C, Barbas CF, 3rd. Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody. Cancer Res 2005; 65:972-81; PMID:15705898
  • Sudol KL, Mastrangelo MA, Narrow WC, Frazer ME, Levites YR, Golde TE, Federoff HJ, Bowers WJ. Generating differentially targeted amyloid-β specific intrabodies as a passive vaccination strategy for Alzheimer disease. Mol Ther 2009; 17:2031-40; PMID:19638957; http://dx.doi.org/10.1038/mt.2009.174
  • Gahrtz M, Conrad U. Immunomodulation of plant function by in vitro selected single-chain Fv intrabodies. Methods Mol Biol 2009; 483:289-312; PMID:19183906; http://dx.doi.org/10.1007/978-1-59745-407-0_17
  • Marschall AL, Single FN, Schlarmann K, Bosio A, Strebe N, van den Heuvel J, Frenzel A, Dübel S. Functional knock down of VCAM1 in mice mediated by endoplasmatic reticulum retained intrabodies. mAbs 2014; 6:1394-401.
  • Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 2011; 12:316-28; PMID:21468099; http://dx.doi.org/10.1038/nrg2971
  • Knight S, Collins M, Takeuchi Y. Insertional mutagenesis by retroviral vectors: current concepts and methods of analysis. Curr Gene Ther 2013; 13:211-27; PMID:23590635; http://dx.doi.org/10.2174/1566523211313030006
  • Jin L, Zeng X, Liu M, Deng Y, He N. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics 2014; 4:240-55; PMID:24505233; http://dx.doi.org/10.7150/thno.6914
  • Papayannakos C, Daniel R. Understanding lentiviral vector chromatin targeting: working to reduce insertional mutagenic potential for gene therapy. Gene Ther 2013; 20:581-8; PMID:23171920; http://dx.doi.org/10.1038/gt.2012.88
  • Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8:573-87; PMID:17607305; http://dx.doi.org/10.1038/nrg2141
  • Kallen KJ, Thess A. A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines 2014; 2:10-31; PMID:24757523; http://dx.doi.org/10.1177/2051013613508729
  • Beerli RR, Wels W, Hynes NE. Inhibition of signaling from Type 1 receptor tyrosine kinases via intracellular expression of single-chain antibodies. Breast Cancer Res Treat 1996; 38:11-7; PMID:8825118; http://dx.doi.org/10.1007/BF01803779
  • Harwerth IM, Wels W, Schlegel J, Muller M, Hynes NE. Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumour cell growth. British J Cancer 1993; 68:1140-5; PMID:7903153; http://dx.doi.org/10.1038/bjc.1993.494
  • Sato JD, Kawamoto T, Le AD, Mendelsohn J, Polikoff J, Sato GH. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol Biol Med 1983; 1:511-29; PMID:6094961
  • Wels W, Beerli R, Hellmann P, Schmidt M, Marte BM, Kornilova ES, Hekele A, Mendelsohn J, Groner B, Hynes NE. EGF receptor and p185erbB-2-specific single-chain antibody toxins differ in their cell-killing activity on tumor cells expressing both receptor proteins. Int J Cancer 1995; 60:137-44; PMID:7814146; http://dx.doi.org/10.1002/ijc.2910600120
  • Arafat W, Gomez-Navarro J, Xiang J, Siegal GP, Alvarez RD, Curiel DT. Antineoplastic effect of anti-erbB-2 intrabody is not correlated with scFv affinity for its target. Cancer Gene Ther 2000; 7:1250-6; PMID:11023197; http://dx.doi.org/10.1038/sj.cgt.7700228
  • Grim JE, Siegal GP, Alvarez RD, Curiel DT. Intracellular expression of the anti-erbB-2 sFv N29 fails to accomplish efficient target modulation. Bioch Biophys Res Commun 1998; 250:699-703; PMID:9784409; http://dx.doi.org/10.1006/bbrc.1998.9391
  • Graus-Porta D, Beerli RR, Hynes NE. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol 1995; 15:1182-91; PMID:7532277
  • Richardson JH, Sodroski JG, Waldmann TA, Marasco WA. Phenotypic knockout of the high-affinity human interleukin 2 receptor by intracellular single-chain antibodies against the α subunit of the receptor. Proc Natl Acad Sci U S A 1995; 92:3137-41; PMID:7724529; http://dx.doi.org/10.1073/pnas.92.8.3137
  • Strebe N, Guse A, Schüngel M, Schirrmann T, Hafner M, Jostock T, Hust M, Müller W, Dübel S. Functional knockdown of VCAM-1 at the posttranslational level with ER retained antibodies. J Immunol Methods 2009; 341:30-40; PMID:19038261; http://dx.doi.org/10.1016/j.jim.2008.10.012
  • Beerli RR, Wels W, Hynes NE. Intracellular expression of single chain antibodies reverts ErbB-2 transformation. J Biol Chem 1994; 269:23931-6; PMID:7929040
  • Richardson JH, Waldmann TA, Sodroski JG, Marasco WA. Inducible knockout of the interleukin-2 receptor α chain: expression of the high-affinity IL-2 receptor is not required for the in vitro growth of HTLV-I-transformed cell lines. Virology 1997; 237:209-16; PMID:9356333; http://dx.doi.org/10.1006/viro.1997.8779
  • Yuan Q, Strauch KL, Lobb RR, Hemler ME. Intracellular single-chain antibody inhibits integrin VLA-4 maturation and function. Biochem J 1996; 318 ( Pt 2):591-6; PMID:8809051
  • Böldicke T, Weber H, Mueller PP, Barleon B, Bernal M. Novel highly efficient intrabody mediates complete inhibition of cell surface expression of the human vascular endothelial growth factor receptor-2 (VEGFR-2/KDR). J Immunol Methods 2005; 300:146-59; PMID:15946674; http://dx.doi.org/10.1016/j.jim.2005.03.007
  • Paganetti P, Calanca V, Galli C, Stefani M, Molinari M. β-site specific intrabodies to decrease and prevent generation of Alzheimer Abeta peptide. J Cell Biol 2005; 168:863-8; PMID:15767460; http://dx.doi.org/10.1083/jcb.200410047
  • Beerli RR, Wels W, Hynes NE. Autocrine inhibition of the epidermal growth factor receptor by intracellular expression of a single-chain antibody. Biochem Biophys Res Commun 1994; 204:666-72; PMID:7980527; http://dx.doi.org/10.1006/bbrc.1994.2511
  • Pelham HR. The dynamic organisation of the secretory pathway. Cell Struct Funct 1996; 21:413-9; PMID:9118249; http://dx.doi.org/10.1247/csf.21.413
  • Chen X, Ye H, Kuruvilla R, Ramanan N, Scangos KW, Zhang C, Johnson NM, England PM, Shokat KM, Ginty DD. A chemical-genetic approach to studying neurotrophin signaling. Neuron 2005; 46:13-21; PMID:15820690; http://dx.doi.org/10.1016/j.neuron.2005.03.009
  • Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, Rossi G, Berardi N, Cattaneo A. Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci 2000; 20:2589-601; PMID:10729339
  • Capsoni S, Tiveron C, Vignone D, Amato G, Cattaneo A. Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proc Natl Acad Sci U S A 2010; 107:12299-304; PMID:20566851; http://dx.doi.org/10.1073/pnas.1007181107
  • Shakespeare WC. SH2 domain inhibition: a problem solved? Curr Opin Chem Biol 2001; 5:409-15; PMID:11470604; http://dx.doi.org/10.1016/S1367-5931(00)00222-2
  • Mandal PK, Gao F, Lu Z, Ren Z, Ramesh R, Birtwistle JS, Kaluarachchi KK, Chen X, Bast RC, Jr., Liao WS, et al. Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem 2011; 54:3549-63; PMID:21486047; http://dx.doi.org/10.1021/jm2000882
  • Hojjat-Farsangi M. Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies. Int J Mol Sci 2014; 15:13768-801; PMID:25110867; http://dx.doi.org/10.3390/ijms150813768
  • Liu S, Kurzrock R. Toxicity of targeted therapy: Implications for response and impact of genetic polymorphisms. Cancer Treat Rev 2014; 40:883-91; PMID:24867380; http://dx.doi.org/10.1016/j.ctrv.2014.05.003
  • Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351:95-105; PMID:10998351; http://dx.doi.org/10.1042/0264-6021:3510095
  • Graham KL, Lee LY, Higgins JP, Steinman L, Utz PJ, Ho PP. Treatment with a toll-like receptor inhibitory GpG oligonucleotide delays and attenuates lupus nephritis in NZB/W mice. Autoimmunity 2010; 43:140-55; PMID:19845477; http://dx.doi.org/10.3109/08916930903229239
  • Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006; 6:823-35; PMID:17063184; http://dx.doi.org/10.1038/nri1957
  • Braden BC, Goldbaum FA, Chen BX, Kirschner AN, Wilson SR, Erlanger BF. X-ray crystal structure of an anti-Buckminsterfullerene antibody fab fragment: biomolecular recognition of C(60). Proc Natl Acad Sci U S A 2000; 97:12193-7; PMID:11035793; http://dx.doi.org/10.1073/pnas.210396197
  • Sheppard D. Dominant negative mutants: tools for the study of protein function in vitro and in vivo. Am J Respir Cell Mol Biol 1994; 11:1-6; PMID:8018332; http://dx.doi.org/10.1165/ajrcmb.11.1.8018332
  • Hust M, Meyer T, Voedisch B, Rülker T, Thie H, El-Ghezal A, Kirsch MI, Schütte M, Helmsing S, Meier D, et al. A human scFv antibody generation pipeline for proteome research. J Biotechnol 2011; 152:159-70; PMID:20883731; http://dx.doi.org/10.1016/j.jbiotec.2010.09.945
  • Geyer CR, McCafferty J, Dubel S, Bradbury AR, Sidhu SS. Recombinant antibodies and in vitro selection technologies. Methods Mol Biol 2012; 901:11-32; PMID:22723092; http://dx.doi.org/10.1007/978-1-61779-931-0_2
  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411:494-8; PMID:11373684; http://dx.doi.org/10.1038/35078107
  • Schmidt FR. About the nature of RNA interference. Appl Microbiol Biotechnol 2005; 67:429-35; PMID:15703909; http://dx.doi.org/10.1007/s00253-004-1882-1
  • Cottingham K. Antibodypedia seeks to answer the question: “how good is that antibody?.” J Proteome Res 2008; 7:4213.
  • Bourbeillon J, Orchard S, Benhar I, Borrebaeck C, de Daruvar A, Dubel S, Frank R, Gibson F, Gloriam D, Haslam N, et al. Minimum information about a protein affinity reagent (MIAPAR). Nat Biotechnol 2010; 28:650-3; PMID:20622827; http://dx.doi.org/10.1038/nbt0710-650
  • Cao T, Heng BC. Intracellular antibodies (intrabodies) versus RNA interference for therapeutic applications. Ann Clin Lab Sci 2005; 35:227-9; PMID:16081577
  • Wang QC, Nie QH, Feng ZH. RNA interference: antiviral weapon and beyond. World J Gastroenterol 2003; 9:1657-61; PMID:12918096
  • Montgomery MK. RNA interference: historical overview and significance. Methods Mol Biol 2004; 265:3-21; PMID:15103066
  • Zhou R, Rana TM. RNA-based mechanisms regulating host-virus interactions. Immunol Rev 2013; 253:97-111; PMID:23550641; http://dx.doi.org/10.1111/imr.12053
  • Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 5:834-9; PMID:12942087; http://dx.doi.org/10.1038/ncb1038
  • Jackson AL, Linsley PS. Noise amidst the silence: off-target effects of siRNAs? Trends Genet 2004; 20:521-4; PMID:15475108; http://dx.doi.org/10.1016/j.tig.2004.08.006
  • Persengiev SP, Zhu X, Green MR. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA (New York, NY) 2004; 10:12-8; http://dx.doi.org/10.1261/rna5160904
  • Sledz CA, Williams BR. RNA interference and double-stranded-RNA-activated pathways. Biochem Soc Trans 2004; 32:952-6; PMID:15506933; http://dx.doi.org/10.1042/BST0320952
  • Snove O, Jr., Holen T. Many commonly used siRNAs risk off-target activity. Biochem Biophys Res Commun 2004; 319:256-63; PMID:15158470; http://dx.doi.org/10.1016/j.bbrc.2004.04.175
  • Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 2010; 9:57-67; PMID:20043028; http://dx.doi.org/10.1038/nrd3010
  • Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23:457-62; PMID:15778705; http://dx.doi.org/10.1038/nbt1081
  • de Fougerolles AR. Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 2008; 19:125-32; PMID:18257677; http://dx.doi.org/10.1089/hum.2008.928
  • Kleinhammer A, Wurst W, Kuhn R. Constitutive and conditional RNAi transgenesis in mice. Methods 2011; 53:430-6; PMID:21184828; http://dx.doi.org/10.1016/j.ymeth.2010.12.015
  • Paroo Z, Corey DR. Challenges for RNAi in vivo. Trends Biotechnol 2004; 22:390-4; PMID:15283982; http://dx.doi.org/10.1016/j.tibtech.2004.06.004
  • Cejka D, Losert D, Wacheck V. Short interfering RNA (siRNA): tool or therapeutic? Clin Sci (Lond) 2006; 110:47-58; PMID:16336204; http://dx.doi.org/10.1042/CS20050162
  • Wirth T, Parker N, Yla-Herttuala S. History of gene therapy. Gene 2013; 525:162-9; PMID:23618815; http://dx.doi.org/10.1016/j.gene.2013.03.137
  • Dickerson JE, Zhu A, Robertson DL, Hentges KE. Defining the role of essential genes in human disease. PloS One 2011; 6:e27368; PMID:22096564; http://dx.doi.org/10.1371/journal.pone.0027368
  • Li JY, Sugimura K, Boado RJ, Lee HJ, Zhang C, Duebel S, Pardridge WM. Genetically engineered brain drug delivery vectors: cloning, expression and in vivo application of an anti-transferrin receptor single chain antibody-streptavidin fusion gene and protein. Protein Eng 1999; 12:787-96; PMID:10506289; http://dx.doi.org/10.1093/protein/12.9.787
  • Blatt NB, Bill RM, Glick GD. Characterization of a unique anti-DNA hybridoma. Hybridoma 1998; 17:33-9; PMID:9523235; http://dx.doi.org/10.1089/hyb.1998.17.33
  • Bradbury A. Antibody Reproducibility challenges: The Solution lies in the sequence. Nature 2015; in press.
  • Toleikis L, Broders O, Dübel S. Cloning single chain antibody fragments (scFv) from hybridoma clones. In Decker J, Reischl U (Eds.), Molecular Diagnosis of Infectious Diseases, 2nd ed. Totowa, NY: Humana Press Inc; 2004:447-58.
  • Zack DJ, Wong AL, Stempniak M, Weisbart RH. Two kappa immunoglobulin light chains are secreted by an anti-DNA hybridoma: implications for isotypic exclusion. Mol Immunol 1995; 32:1345-53; PMID:8643104; http://dx.doi.org/10.1016/0161-5890(95)00112-3
  • Strebe N, Breitling F, Moosmayer D, Brocks D, Dübel S. Cloning of Variable domains from mouse hybridoma by PCR. In Antibody Engineering (Vol. 1; 2nd ed.). Berlin: Springer Protocols; 2010:3-14.
  • Wheeler YY, Kute TE, Willingham MC, Chen SY, Sane DC. Intrabody-based strategies for inhibition of vascular endothelial growth factor receptor-2: effects on apoptosis, cell growth, and angiogenesis. FASEB J 2003; 17:1733-5; PMID:12958192
  • Alvarez RD, Barnes MN, Gomez-Navarro J, Wang M, Strong TV, Arafat W, Arani RB, Johnson MR, Roberts BL, Siegal GP, et al. A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase I trial. Clin Cancer Res 2000; 6:3081-7; PMID:10955787
  • Deshane J, Siegal GP, Wang M, Wright M, Bucy RP, Alvarez RD, Curiel DT. Transductional efficacy and safety of an intraperitoneally delivered adenovirus encoding an anti-erbB-2 intracellular single-chain antibody for ovarian cancer gene therapy. Gynecol Oncol 1997; 64:378-85; PMID:9062138; http://dx.doi.org/10.1006/gyno.1996.4566
  • Grim J, Deshane J, Siegal GP, Alvarez RD, DiFiore P, Curiel DT. The level of erbB2 expression predicts sensitivity to the cytotoxic effects of an intracellular anti-erbB2 sFv. J Mol Med 1998; 76:451-8; PMID:9625302; http://dx.doi.org/10.1007/s001090050237
  • Wright M, Grim J, Deshane J, Kim M, Strong TV, Siegal GP, Curiel DT. An intracellular anti-erbB-2 single-chain antibody is specifically cytotoxic to human breast carcinoma cells overexpressing erbB-2. Gene Ther 1997; 4:317-22; PMID:9176517; http://dx.doi.org/10.1038/sj.gt.3300372
  • Jannot CB, Beerli RR, Mason S, Gullick WJ, Hynes NE. Intracellular expression of a single-chain antibody directed to the EGFR leads to growth inhibition of tumor cells. Oncogene 1996; 13:275-82; PMID:8710366
  • Wang W, Zhou J, Xu L, Zhen Y. Antineoplastic effect of intracellular expression of a single-chain antibody directed against type IV collagenase. J Environ Pathol Toxicol Oncol 2000; 19:61-8; PMID:10905509
  • Sangboonruang S, Thammasit P, Intasai N, Kasinrerk W, Tayapiwatana C, Tragoolpua K. EMMPRIN reduction via scFv-M6-1B9 intrabody affects alpha3beta1-integrin and MCT1 functions and results in suppression of progressive phenotype in the colorectal cancer cell line Caco-2. Cancer Gene Ther 2014; 21:246-55; PMID:24924201; http://dx.doi.org/10.1038/cgt.2014.24
  • Thammasit P, Sangboonruang S, Suwanpairoj S, Khamaikawin W, Intasai N, Kasinrerk W, Tayapiwatana C, Tragoolpua K. Intracellular Acidosis Promotes Mitochondrial Apoptosis Pathway: Role of EMMPRIN Down-regulation via Specific Single-chain Fv Intrabody. J Cancer 2015; 6:276-86; PMID:25663946; http://dx.doi.org/10.7150/jca.10879
  • Figini M, Ferri R, Mezzanzanica D, Bagnoli M, Luison E, Miotti S, Canevari S. Reversion of transformed phenotype in ovarian cancer cells by intracellular expression of anti folate receptor antibodies. Gene Ther 2003; 10:1018-25; PMID:12776159; http://dx.doi.org/10.1038/sj.gt.3301962
  • Guillaume-Rousselet N, Jean D, Frade R. Cloning and characterization of anti-cathepsin L single chain variable fragment whose expression inhibits procathepsin L secretion in human melanoma cells. Biochem J 2002; 367:219-27; PMID:12241546; http://dx.doi.org/10.1042/BJ20020350
  • Accardi L, Paolini F, Mandarino A, Percario Z, Di Bonito P, Di Carlo V, Affabris E, Giorgi C, Amici C, Venuti A. In vivo antitumor effect of an intracellular single-chain antibody fragment against the E7 oncoprotein of human papillomavirus 16. Int J Cancer 2014; 134:2742-7; PMID:24226851; http://dx.doi.org/10.1002/ijc.28604
  • Rondon IJ, Marasco WA. Intracellular antibodies (intrabodies) for gene therapy of infectious diseases. Annu Rev Microbiol 1997; 51:257-83; PMID:9343351; http://dx.doi.org/10.1146/annurev.micro.51.1.257
  • Poznansky MC, Foxall R, Mhashilkar A, Coker R, Jones S, Ramstedt U, Marasco W. Inhibition of human immunodeficiency virus replication and growth advantage of CD4+ T cells from HIV-infected individuals that express intracellular antibodies against HIV-1 gp120 or Tat. Hum Gene Ther 1998; 9:487-96; PMID:9525310; http://dx.doi.org/10.1089/hum.1998.9.4-487
  • Zhou P, Goldstein S, Devadas K, Tewari D, Notkins AL. Cells transfected with a non-neutralizing antibody gene are resistant to HIV infection: targeting the endoplasmic reticulum and trans-Golgi network. J Immunol 1998; 160:1489-96.
  • Walsh R, Nuttall S, Revill P, Colledge D, Cabuang L, Soppe S, Dolezal O, Griffiths K, Bartholomeusz A, Locarnini S. Targeting the hepatitis B virus precore antigen with a novel IgNAR single variable domain intrabody. Virology 2011; 411:132-41; PMID:21239030; http://dx.doi.org/10.1016/j.virol.2010.12.034
  • Liao W, Strube RW, Milne RW, Chen SY, Chan L. Cloning of apoB intrabodies: specific knockdown of apoB in HepG2 cells. Biochem Biophys Res Commun 2008; 373:235-40; PMID:18558087; http://dx.doi.org/10.1016/j.bbrc.2008.06.020
  • Heintges T, zu Putlitz J, Wands JR. Characterization and binding of intracellular antibody fragments to the hepatitis C virus core protein. Biochem Biophys Res Commun 1999; 263:410-8; PMID:10491307; http://dx.doi.org/10.1006/bbrc.1999.1350
  • Blazek D, Celer V, Navratilova I, Skladal P. Generation and characterization of single-chain antibody fragments specific against transmembrane envelope glycoprotein gp46 of maedi-visna virus. J Virol Methods 2004; 115:83-92; PMID:14656464; http://dx.doi.org/10.1016/j.jviromet.2003.09.020
  • Steinberger P, Andris-Widhopf J, Buhler B, Torbett BE, Barbas CF, 3rd. Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion. Proc Natl Acad Sci U S A 2000; 97:805-10; PMID:10639161; http://dx.doi.org/10.1073/pnas.97.2.805
  • Swan CH, Buhler B, Steinberger P, Tschan MP, Barbas CF, 3rd, Torbett BE. T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Ther 2006; 13:1480-92; PMID:16738691; http://dx.doi.org/10.1038/sj.gt.3302801
  • Cordelier P, Kulkowsky JW, Ko C, Matskevitch AA, McKee HJ, Rossi JJ, Bouhamdan M, Pomerantz RJ, Kari G, Strayer DS. Protecting from R5-tropic HIV: individual and combined effectiveness of a hammerhead ribozyme and a single-chain Fv antibody that targets CCR5. Gene Ther 2004; 11:1627-37; PMID:15295615; http://dx.doi.org/10.1038/sj.gt.3302329
  • BouHamdan M, Strayer DS, Wei D, Mukhtar M, Duan LX, Hoxie J, Pomerantz RJ. Inhibition of HIV-1 infection by down-regulation of the CXCR4 co-receptor using an intracellular single chain variable fragment against CXCR4. Gene Ther 2001; 8:408-18; PMID:11313818; http://dx.doi.org/10.1038/sj.gt.3301411
  • Mukhtar M, Acheampong E, Khan MA, Bouhamdan M, Pomerantz RJ. Down-modulation of the CXCR4 co-receptor by intracellular expression of a single chain variable fragment (SFv) inhibits HIV-1 entry into primary human brain microvascular endothelial cells and post-mitotic neurons. Brain Res Mol Brain Res 2005; 135:48-57; PMID:15857668; http://dx.doi.org/10.1016/j.molbrainres.2004.11.015
  • Beyer F, Doebis C, Busch A, Ritter T, Mhashilkar A, Marasco WM, Laube H, Volk HD, Seifert M. Decline of surface MHC I by adenoviral gene transfer of anti-MHC I intrabodies in human endothelial cells-new perspectives for the generation of universal donor cells for tissue transplantation. J Gene Med 2004; 6:616-23; PMID:15170732; http://dx.doi.org/10.1002/jgm.548
  • Busch A, Marasco WA, Doebis C, Volk HD, Seifert M. MHC class I manipulation on cell surfaces by gene transfer of anti-MHC class I intrabodies-a tool for decreased immunogenicity of allogeneic tissue and cell transplants. Methods 2004; 34:240-9; PMID:15312677; http://dx.doi.org/10.1016/j.ymeth.2004.03.017
  • Mhashilkar AM, Doebis C, Seifert M, Busch A, Zani C, Soo Hoo J, Nagy M, Ritter T, Volk HD, Marasco WA. Intrabody-mediated phenotypic knockout of major histocompatibility complex class I expression in human and monkey cell lines and in primary human keratinocytes. Gene Ther 2002; 9:307-19; PMID:11938450; http://dx.doi.org/10.1038/sj.gt.3301656
  • Koistinen P, Pulli T, Uitto VJ, Nissinen L, Hyypia T, Heino J. Depletion of alphaV integrins from osteosarcoma cells by intracellular antibody expression induces bone differentiation marker genes and suppresses gelatinase (MMP-2) synthesis. Matrix Biol 1999; 18:239-51; PMID:10429943; http://dx.doi.org/10.1016/S0945-053X(99)00022-0
  • Koistinen P, Heino J. The selective regulation of α Vbeta 1 integrin expression is based on the hierarchical formation of α V-containing heterodimers. J Biol Chem 2002; 277:24835-41; PMID:11997396; http://dx.doi.org/10.1074/jbc.M203149200
  • Koistinen P, Ahonen M, Kahari VM, Heino J. alphaV integrin promotes in vitro and in vivo survival of cells in metastatic melanoma. Int J Cancer 2004; 112:61-70; PMID:15305376; http://dx.doi.org/10.1002/ijc.20377
  • Richardson JH, Hofmann W, Sodroski JG, Marasco WA. Intrabody-mediated knockout of the high-affinity IL-2 receptor in primary human T cells using a bicistronic lentivirus vector. Gene Ther 1998; 5:635-44; PMID:9797868; http://dx.doi.org/10.1038/sj.gt.3300644
  • Tragoolpua K, Intasai N, Kasinrerk W, Mai S, Yuan Y, Tayapiwatana C. Generation of functional scFv intrabody to abate the expression of CD147 surface molecule of 293A cells. BMC Biotechnol 2008; 8:5; PMID:18226275; http://dx.doi.org/10.1186/1472-6750-8-5
  • Kovaleva M, Bussmeyer I, Rabe B, Grotzinger J, Sudarman E, Eichler J, Conrad U, Rose-John S, Scheller J. Abrogation of viral interleukin-6 (vIL-6)-induced signaling by intracellular retention and neutralization of vIL-6 with an anti-vIL-6 single-chain antibody selected by phage display. J Virol 2006; 80:8510-20; PMID:16912301; http://dx.doi.org/10.1128/JVI.00420-06
  • Cardinale A, Filesi I, Vetrugno V, Pocchiari M, Sy MS, Biocca S. Trapping prion protein in the endoplasmic reticulum impairs PrPC maturation and prevents PrPSc accumulation. J Biol Chem 2005; 280:685-94; PMID:15513919; http://dx.doi.org/10.1074/jbc.M407360200
  • Vetrugno V, Cardinale A, Filesi I, Mattei S, Sy MS, Pocchiari M, Biocca S. KDEL-tagged anti-prion intrabodies impair PrP lysosomal degradation and inhibit scrapie infectivity. Biochem Biophys Res Commun 2005; 338:1791-7; PMID:16288721; http://dx.doi.org/10.1016/j.bbrc.2005.10.146
  • Peng JL, Wu S, Zhao XP, Wang M, Li WH, Shen X, Liu J, Lei P, Zhu HF, Shen GX. Downregulation of transferrin receptor surface expression by intracellular antibody. Biochem Biophys Res Commun 2007; 354:864-71; PMID:17266924; http://dx.doi.org/10.1016/j.bbrc.2007.01.052
  • Intasai N, Tragoolpua K, Pingmuang P, Khunkaewla P, Moonsom S, Kasinrerk W, Lieber A, Tayapiwatana C. Potent inhibition of OKT3-induced T cell proliferation and suppression of CD147 cell surface expression in HeLa cells by scFv-M6-1B9. Immunobiology 2009; 214:410–21.
  • Meli G, Lecci A, Manca A, Krako N, Albertini V, Benussi L, Ghidoni R, Cattaneo A. Conformational targeting of intracellular Abeta oligomers demonstrates their pathological oligomerization inside the endoplasmic reticulum. Nat Commun 2014; 5:3867; PMID:24861166; http://dx.doi.org/10.1038/ncomms4867
  • Steinberger P, Sutton JK, Rader C, Elia M, Barbas CF, 3rd. Generation and characterization of a recombinant human CCR5-specific antibody. A phage display approach for rabbit antibody humanization. J Biol Chem 2000; 275:36073-8; PMID:10969070; http://dx.doi.org/10.1074/jbc.M002765200